PREFACE |
|
vii | (1) |
PREREQUISITIES |
|
viii | (1) |
CONVENTIONS AND NOTATIONS |
|
ix | |
INTRODUCTION AND OVERVIEW |
|
1 | (10) |
|
Chapter 1 SOME ELEMENTARY RESULTS |
|
|
11 | (20) |
|
1. Remarks on logical notation and boolean algebras |
|
|
11 | (2) |
|
2. Elementary facts on structures |
|
|
13 | (3) |
|
|
16 | (3) |
|
4. O-minimal ordered groups and rings |
|
|
19 | (2) |
|
5. Model-theoretic structures |
|
|
21 | (3) |
|
6. The simplest o-minimal structures |
|
|
24 | (1) |
|
|
25 | (4) |
|
|
29 | (2) |
|
Chapter 2 SEMIALGEBRAIC SETS |
|
|
31 | (12) |
|
1. Thom's lemma and continuity of roots |
|
|
31 | (2) |
|
2. Semialgebraic cell decomposition |
|
|
33 | (5) |
|
3. Thom's lemma with parameters |
|
|
38 | (3) |
|
|
41 | (2) |
|
Chapter 3 CELL DECOMPOSITION |
|
|
43 | (20) |
|
1. The monotonicity theorem and the finiteness lemma |
|
|
43 | (6) |
|
2. The cell decomposition theorem |
|
|
49 | (10) |
|
|
59 | (2) |
|
|
61 | (2) |
|
Chapter 4 DEFINABLE INVARIANTS: DIMENSION AND EULER CHARACTERISTIC |
|
|
63 | (16) |
|
|
63 | (6) |
|
|
69 | (8) |
|
|
77 | (2) |
|
Chapter 5 THE VAPNIK-CHERVONENKIS PROPERTY IN O-MINIMAL STRUCTURES |
|
|
79 | (14) |
|
1. A combinatorial dichotomy |
|
|
79 | (2) |
|
2. Vapnik-Chervonenkis classes and dependence |
|
|
81 | (4) |
|
3. Reduction to the case q = 1 |
|
|
85 | (6) |
|
|
91 | (2) |
|
Chapter 6 POINT-SET TOPOLOGY IN O-MINIMAL STRUCTURES |
|
|
93 | (14) |
|
|
93 | (5) |
|
|
98 | (2) |
|
3. Paths and partitions of unity |
|
|
100 | (2) |
|
4. Curves, proper maps, and identifying maps |
|
|
102 | (4) |
|
|
106 | (1) |
|
|
107 | (12) |
|
1. Differentiability in ordered fields |
|
|
107 | (2) |
|
2. Inverse function theorem |
|
|
109 | (5) |
|
3. Definable maps are piecewise C(1) |
|
|
114 | (3) |
|
4. Existence of good directions |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (22) |
|
1. Simplexes and complexes |
|
|
119 | (8) |
|
|
127 | (7) |
|
3. Definable retractions and definable continuous extensions |
|
|
134 | (4) |
|
|
138 | (3) |
|
|
141 | (14) |
|
1. Trivialization theorem |
|
|
142 | (7) |
|
|
149 | (1) |
|
3. On a conjecture of Benedetti and Risler |
|
|
150 | (4) |
|
|
154 | (1) |
|
Chapter 10 DEFINABLE SPACES AND QUOTIENTS |
|
|
155 | (14) |
|
|
156 | (5) |
|
2. Definable quotient spaces |
|
|
161 | (7) |
|
|
168 | (1) |
HINTS AND SOLUTIONS |
|
169 | (4) |
REFERENCES |
|
173 | (4) |
INDEX |
|
177 | |