Preface xxi
Part I: Power Converter Topologies for Sustainable Applications 1
1 DC-DC Power Converter Topologies for Sustainable Applications 3
Nandish B. M., Pushparajesh V. and Marulasiddappa H. B.
1.1 Introduction 4
1.2 Classifications of DC-DC Converters 4
1.2.1 Classification of Linear Mode DC-DC Converters 5
1.2.1.1 Series Regulators 5
1.2.1.2 Parallel Regulators 6
1.2.2 Classification of Hard Switching DC-DC Converter 6
1.2.2.1 List of Isolated DC-DC Topologies 6
1.2.2.2 Classification of Non-Isolated DC-DC Converters 10
1.2.3 Classification of Soft Switching DC-DC Converter 16
1.2.3.1 Zero Current Switching (ZCS) 16
1.2.3.2 Zero Voltage Switching (ZVS) 16
1.3 Applications of DC-DC Converters in Real World 16
1.4 Conclusion 18
References 18
2 DC-DC Converters for Fuel Cell Power Sources 21
M. Venkatesh Naik, Paulson Samuel and Srinivasan Pradabane
2.1 DC-DC Boost Converter in Fuel Cell (FC) Applications 22
2.2 DC-DC Buck Converter 26
2.3 DC-DC Buck-Boost Converter 27
2.4 DC-DC Cuk-Converter 29
2.5 DC-DC Sepic Converter 30
2.6 Multi-Phase and Multi-Device Techniques for Ripple Current Reduction 32
2.6.1 Multi-Device Boost Converter 33
2.6.2 Multi-Phase Interleaved Boost Converter 35
2.6.3 Multi-Device Multi-Phase Interleaved Boost Converter 37
2.7 The Proposed High Gain Multi-Device Multi-Phase Interleaved Boost Converter 42
2.7.1 Operating Principle of HGMDMPIBC 44
2.8 Non-Inverting Buck-Boost Converters for Low Voltage FC Applications 48
2.8.1 Single Switch Non-Inverting Buck-Boost Converter 49
2.8.2 Interleaved Buck-Boost Converter 52
2.9 Proposed Multi-Device Buck-Boost Converter for Low Voltage FC Applications 57
2.10 The Proposed Multi-Device Multi-Phase Interleaved Buck-Boost Converter for Low Voltage FC Applications 59
2.11 Converter Configurations for Integrating FC with 400 V Grid Voltages 62
2.11.1 Series Configuration 62
2.11.2 DC-Distributed Configuration 64
2.12 Conclusions 65
References 66
3 High Gain DC-DC Converters for Photovoltaic Applications 71
M. Prabhakar and B. Sri Revathi
3.1 Introduction 71
3.1.1 Role of DC-DC Converter in Renewable Energy System 72
3.1.2 Classical Boost Converter (CBC) 75
3.2 Gain Extension Mechanisms 77
3.2.1 Voltage-Lift Capacitor (Clift ) 77
3.2.2 Coupled Inductor (CI) 78
3.2.3 Voltage Multiplier Cells (VMC) 79
3.3 Synthesis of High Gain DC-DC Converters 80
3.3.1 Concept of Interleaving 80
3.3.2 Interleaving Mechanism with Coupled Inductors (CIs) 83
3.3.3 VMCs at Secondary Side of CIs 84
3.4 Development of High Gain DC-DC Converters (HGCs) 84
3.4.1 HGC with 3 CIs, Clift , and VMC 85
3.4.1.1 Design Details of HGC- 1 90
3.4.1.2 Experimental Results of Prototype HGC- 1 and Discussion 95
3.4.2 3-Phase Interleaved HGC with 1 CI, Clift , and VMC 101
3.4.3 Modular HGC with 3 CIs, Clift , and 3 VMCs 104
3.4.4 Compact HGC Based on Multi-Winding CI, Clift , and VMC 107
3.4.4.1 Voltage Stress on Devices 109
3.4.4.2 Current Stress on Devices 109
3.5 Operating Capabilities of the Proposed HGCs – A Comparison 111
3.5.1 Electrical Characteristics 111
3.5.1.1 Ideal Voltage Gain 111
3.5.1.2 Loss Distribution Profile 113
3.5.2 Stress on Switches 115
3.5.2.1 Peak Voltage Stress 116
3.5.2.2 Peak Current Stress 117
3.5.3 Structural Parameters 117
3.5.3.1 Coefficient of Coupling (k) 117
3.5.3.2 Component Count (CC) and Component Utilisation Ratio (CUR) 118
3.6 Salient Features of the Presented High Gain Converters 119
3.7 Summary and Outlook 120
References 122
4 Design of DC-DC Converters for Electric Vehicle Wireless Charging Energy Storage System 127
T. Kripalakshmi and T. Deepa
4.1 Introduction 128
4.2 Isolated Converters 130
4.2.1 Bridge Type 130
4.2.2 Z-Source Type 131
4.2.3 Sinusoidal Amplitude High Voltage Bus Converter (sahvc) 131
4.2.4 Multiport Converter 133
4.3 Non-Isolated Converter 133
4.3.1 Conventional Converters 133
4.3.2 Interleaved Converter 134
4.3.3 Multi-Device Interleaved 135
4.4 Design of DC-DC Converter with Integration of ICPT and Battery Implementation with Digital Control Loop 136
4.4.1 Design of DC-DC for BEV with the Integration of ICPT 136
4.4.2 Digital Control with Sliding Mode Control Approach 139
4.5 Design of Converter with Hybrid Energy Storage System and Bidirectional Converter 143
4.6 Conclusion 145
References 145
5 Performance Analysis of Series Load Resonant (SLR) DC–DC Converter 149
A. Mitra, S. Bhowmik, A. Halder, S. Karmakar and T. Paul
5.1 Introduction 149
5.2 Theoretical Background 151
5.3 Simulation Results 155
5.4 Conclusion 157
References 158
6 Review on Different Methodologies of DC-AC Converter 159
Pushparajesh V., Marulasiddappa H. B. and Nandish B. M.
6.1 Introduction 160
6.2 Different Multilevel Inverter Topologies 162
6.2.1 Diode Clamped MLI (DCMLI) 162
6.2.2 Flying Capacitor mli 164
6.2.3 Cascaded H-Bridge mli 165
6.2.4 New Hybrid Cascaded mli 167
6.2.4.1 Stepped Wave Modulation Topology (swmt) 167
6.2.4.2 Fourier Series of Proposed Waveform 168
6.2.4.3 Proposed Topology (New Hybrid MLI) 169
6.3 Comparison between Various mli 172
6.4 Conclusion 173
References 173
7 Grid Connected Inverter for Solar Photovoltaic Power Generation 175
K.K. Saravanan and M. Durairasan
7.1 Single Phase Seven Level Inverter Fed Grid Connected PV System 176
7.1.1 Seven Level Inverter Topology 176
7.1.2 PWM Technique for Seven Level Inverter 177
7.1.3 Modelling and Simulation Analysis of Seven Level Inverter 180
7.2 Simlink Model of Nine Level H-Bridge Inverter 181
7.3 Three Phase Fifteen Level Inverter Fed Grid Connected System 182
7.3.1 Modified System of Fifteen Level Inverter 182
7.3.2 Modelling of Cascaded H-Bridge Fifteen Level Inverter 183
7.3.3 Evaluation of THD 184
7.4 Fesability Analysis of Photovoltaic System in Grid Connected Inverter 185
7.4.1 Modified PV-DVR System 185
7.4.1.1 Dynamic Voltage Restorer (DVR) Mode 187
7.4.1.2 Uninterruptable Power Supply (UPS) Mode 187
7.4.1.3 Energy Conservation Mode 187
7.4.1.4 Idle Mode 187
7.4.2 Photovoltaic DC-DC Converter 188
7.4.3 Maximum Power Point Tracking of PV System 191
7.4.4 Methods of Maximum Power Point Tracking 192
7.4.4.1 Perturb and Observe Method 192
7.4.4.2 Incremental Conductance Method 193
7.4.4.3 Current Sweep Method 193
7.4.4.4 Constant Voltage Method 194
7.4.5 Comparison of MPPT Methods 194
7.4.6 Operating Principle of P&O MPPT 195
7.4.7 Simulation Results of PV-DVR System 195
7.4.8 Grid Connected System Using PV Syst Tool 197
7.4.8.1 PV System Simulation Result Analysis 199
7.5 Conclusion 199
7.6 Future Scope of Work 200
References 200
8 A Novel Fusion Switching Pattern Generation Algorithm for “N-Level” Switching Angle Algorithm Based Trinary Cascaded Hybrid Multi-Level Inverter 203
Joseph Anthony Prathap and T.S. Anandhi
8.1 Introduction 204
8.2 Trinary Cascaded Hybrid MLI Circuitry 206
8.3 Switching Angle Algorithm 208
8.3.1 Equal Phase Switching Angle Algorithm (EP-SAA) 209
8.3.2 Half Equal Phase Switching Angle Algorithm (hep-saa) 209
8.3.3 Feed Forward Switching Angle Algorithm (FF-SAA) 209
8.3.4 Half Height Switching Angle Algorithm (HH-SAA) 209
8.4 9-Level Trinary Cascaded Hybrid Multi-Level Inverter 210
8.4.1 SAA for 9-Level TCHMLI 210
8.4.2 Generation of Switching Function for the 9-Level Trinary Cascaded Hybrid mli 215
8.4.3 Generation of DPWM for the 9-Level Trinary Cascaded Hybrid mli 215
8.4.4 Simulation Results of 9-Level Trinary Cascaded Hybrid mli 216
8.5 27-Level Trinary Cascaded Hybrid mli 222
8.5.1 SAA for 27-Level TCHMLI 223
8.5.2 Generation of Switching Function for the 27-Level Trinary Cascaded Hybrid mli 225
8.5.3 Generation of DPWM for the 27-Level Trinary Cascaded Hybrid mli 231
8.5.4 Simulation Results of 27-Level Trinary Cascaded Hybrid mli 231
8.6 81-Level Trinary Cascaded Hybrid mli 240
8.6.1 SAA for 81-Level Trinary Cascaded Hybrid mli 240
8.6.2 Generation of Switching Function for the 81-Level Trinary Cascaded Hybrid mli 248
8.6.3 Generation of DPWM for 81-Level Trinary Cascaded Hybrid mli 265
8.6.4 Flow Diagram of 81-Level Trinary Cascaded Hybrid mli 266
8.6.5 5 Roles of Design Resolution in Trinary Cascaded Hybrid mli 266
8.6.6 Simulation Results of 81-Level Trinary Cascaded Hybrid mli 268
8.7 FPGA Experimental Validation with Specification 279
8.8 Hardware Results and Discussion 279
8.9 Conclusion 280
References 290
9 An Inspection on Multilevel Inverters Based on Sustainable Applications 293
L. Vijayaraja, R. Dhanasekar and S. Ganesh Kumar
9.1 Introduction 293
9.2 Multilevel Inverters in Sustainable Applications 294
9.3 Development of Multilevel Inverter 299
9.3.1 Diode-Clamped 299
9.3.2 Flying Capacitor 300
9.3.3 Cascaded H-Bridge mli 301
9.4 Symmetric mli 301
9.5 Asymmetric mli 305
9.6 An Examination on Current MLI’s 307
9.7 Summary 311
Acknowledgement 311
References 311
Part II: Electric Machines and Drives for Sustainable Applications 315
10 Technical Study of Electric Vehicle Charging Infrastructure and Standards 317
R. Seyezhai and S. Harika
10.1 Introduction 317
10.2 Background 318
10.3 Review of EV Charging Infrastructure 320
10.4 Review of DC-DC Converters for EVCs 323
10.5 Standards for EV and EVSE 327
10.5.1 Description of EV Connector 330
10.6 Charging Stations in India 331
10.7 Conclusion 332
References 332
11 Implementation of Model Predictive Control for Reduced Torque Ripple in Orthopaedic Surgical Drilling Applications with Permanent Magnet Synchronous Machine 337
Ramya L. N. and Sivaprakasam A.
11.1 Introduction 338
11.2 Role of Motor in Orthopaedic Drilling Applications 341
11.2.1 BLDC Motors 341
11.2.2 Permanent Magnet Synchronous Motors 341
11.2.2.1 PMSM Machine Equations 342
11.2.3 Control Methods of PMSM 343
11.3 Model Predictive Control 347
11.3.1 Structure of MPC 348
11.3.2 Cost Function 349
11.4 Predictive Control Techniques for PMSM 350
11.4.1 Conventional Model Predictive Torque Control (MPC) 350
11.4.2 Proposed MPC Technique 352
11.5 Implementation and Results 354
11.5.1 Comparative Study of Steady State Performance of Proposed MPC and Conventional MPC under Loaded Condition 355
11.5.2 Steady State Performance at 50% Rated Speed 356
11.5.3 Steady State Performance at 100% Rated Speed 357
11.5.4 Real-Time Simulation Result Analysis with OPAL-RT Lab 357
11.5.4.1 Steady-State Response 358
11.5.4.2 Start-Up Response 359
11.6 Implementation Analysis 359
11.7 Conclusion 362
References 362
12 High Precision Drives for Piezoelectric Actuators Based Motion Control Microsystems 367
D. V. Sabarianand and P. Karthikeyan
12.1 Introduction 368
12.2 Driving Methods of PEA 369
12.3 Driver Circuits for Driving PEA in High Voltage Applications 369
12.4 Different Types of Power Supply Used for Driving the Piezo Driver 377
12.5 Different Types of Voltage Regulator Used for Driving the Piezo Driver 380
12.6 Conclusions 385
References 386
13 Design and Analysis of 31-Level Asymmetrical Multilevel Inverter Topology for R, RL, & Motor Load 391
E. Duraimurugan, R. S. Jeevitha, S. Dillirani, L. Vijayaraja and S. Ganesh Kumar
13.1 Introduction 391
13.2 Incorporation of Multilevel Inverters in Various Applications 392
13.3 Modeling of 31-Level Asymmetric Inverter 394
13.3.1 Mathematical Modeling of 31-Level Inverter 395
13.3.2 Modes of Operation 396
13.3.3 Switching Principle of 31-Level Inverter 398
13.4 Simulation Circuit and Result Discussions 400
13.4.1 Block Diagram for Pulse Generation 400
13.4.2 Simulation of 31-Level Inverter with R Load 400
13.4.3 Simulation of 31-Level Inverter with RL Load 402
13.4.4 Simulation of 31-Level Inverter Fed with
1φ Induction Motor 405
13.5 Conclusion 407
Acknowledgement 407
References 407
14 Permanent Magnet Assisted Synchronous Reluctance Motor: Analysis and Design with Rare Earth Free Hybrid Magnets 411
P. Ramesh, D. Pradhap and N. C. Lenin
14.1 Introduction 411
14.2 Literature Survey 413
14.3 Construction and Torque Equation 415
14.4 Design Specifications and Machine Topologies 417
14.5 No-Load Characteristics 421
14.6 Performance at Various Operating Regions 424
14.7 Conclusion 429
Acknowledgment 433
References 433
15 Design of Bidirectional DC – DC Converters and Controllers for Hybrid Energy Sources in Electric Vehicles 437
R. Chandrasekaran, M. Satish Kumar Reddy, K. Selvajyothi and B. Raja
15.1 Introduction 437
15.2 Need For Hybrid Energy Management Systems in EV 439
15.3 Hybrid Energy Storage System (HESS) 440
15.3.1 Passive Parallel HESS 441
15.3.2 Parallel Converter HESS 441
15.4 Bidirectional DC-DC Converters (BDC) 442
15.5 Specifications of DC-DC Converters 446
15.6 Control Strategy 447
15.7 Results and Discussion 449
15.8 Conclusions 459
References 460
16 Design of Rare Earth Magnet Free Traction Motor 463
Akhila K. and K. Selvajyothi
16.1 Introduction 464
16.2 Comparison Among Traction Motor Choices 468
16.3 Motor Peak Power Calculation Based on Vehicle Dynamics 473
16.4 Operating Principle of SynRM & Basic Terminologies 475
16.5 SynRM Design Concepts: Effect of Design Parameters on Performance 482
16.6 Analytical Design of SynRM 486
16.6.1 Stator & Winding Design 486
16.6.2 Rotor Design 490
16.6.2.1 Determining Barrier End Angle, αm 491
16.6.2.2 Determining Segment Width, SI 491
16.6.2.3 Determining Barrier Width, W1I 493
16.7 Electromagnetic Analysis –Results & Discussion 496
16.8 Investigation on Impact of Different Parameters 500
16.8.1 Torque-Speed Curve 506
16.9 Summary 510
16.10 Future Work 513
References 513
17 Implementation of Automatic Unmanned Battery Charging System for Electric Cars 517
Shefali Jagwani
17.1 Introduction 518
17.2 Proposed System 521
17.3 MATLAB Simulation 523
17.3.1 Mathematical Modelling 523
17.3.2 Simulation and Analysis of Battery Discharging at EV Charging Station 526
17.4 Conclusion 529
References 529
18 Improved Dual Output DC-DC Converter for Electric Vehicle Charging Application 533
R. Latha
18.1 Introduction 534
18.2 Proposed Dual Output Quadratic Boost Converter 537
18.2.1 Solar PV System 537
18.2.1.1 Mathematical Modeling of PV System 537
18.2.2 Switching Methodology 538
18.2.2.1 Topology of Proposed Converter 539
18.2.3 Estimation of Parameters of Proposed SIDO Converter 543
18.2.3.1 Design Example 544
18.3 Simulation of the Proposed Converter 545
18.4 Experimental Results 545
18.5 Conclusion 550
References 551
19 DFIG Based Wind Energy Conversion Using Direct Matrix Converter 553
Vineet Dahiya
Chapter-i 554
Introduction 554
19.1 Introduction to Matrix Converters 558
19.2 Introduction to Control and Modulation Techniques in Matrix Convertor 559
19.3 Introduction to Predictive Control Techniques 562
Chapter-ii 562
Concept and System Description: Doubly Fed Induction Generator (DFIG) in Wind Energy Conversion System 562
Chapter-iii 571
Modeling and Simulation of DFIG in MATLAB 571
Chapter-iv 574
The Matrix Converter and Predictive Control Technique 574
19.4 Topologies of Matrix Converters and Use of Predictive Control 583
19.5 Conclusion 588
19.6 Scope for Future Work 589
References 590
Part III: Trends in Control Methods for Sustainable Applications 595
20 Microgrid: Recent Trends and Control 597
S. Monesha and S. Ganesh Kumar
20.1 Introduction 598
20.2 MG Concept 599
20.2.1 Different Structures of MG 600
20.2.1.1 Ac Mg 600
20.2.1.2 dc Mg 601
20.2.1.3 Hybrid AC/DC MG 602
20.2.1.4 Urban DC MG 602
20.2.1.5 Ceiling DC MG 602
20.3 MG Control Layer 603
20.4 Functional Requirements of MG Management 604
20.4.1 Forecast 604
20.4.2 Real-Time Optimization 604
20.4.3 Data Analysis and Communication 604
20.4.4 Human Machine Interface 605
20.5 Energy Management Schemes 605
20.5.1 Communication-Based Energy Management 605
20.5.2 The Communication-Less Energy Management System 608
20.6 Overview of MG Control 611
20.6.1 Power Flow Control by Current Regulation 611
20.6.2 Power Flow Control by Voltage Regulation 612
20.6.3 Agent-Based Control 613
20.6.4 Multi-Agent System (MAS) Based Distributed Control 613
20.6.5 PQ Control 614
20.6.6 VSI Control 614
20.6.7 Central Control 614
20.6.8 Master/Slave Control 615
20.6.9 Distributed Control 615
20.6.10 Droop Control 616
20.6.11 Control Design Based on Transfer Function 616
20.6.12 Direct Lyapunov Control (DLC) 617
20.6.13 Passivity Based Control (PBC) 617
20.6.14 Model Predictive Control (MPC) 618
20.7 IEEE and IEC Standards 621
20.8 Challenges of MG Controls 623
20.8.1 Future Trends 624
Acknowledgement 624
References 624
21 Control Techniques in Sustainable Applications 631
R. Dhanasekar, L. Vijayaraja and S. Ganesh Kumar
21.1 Introduction 632
21.2 Sliding Mode Control Techniques in Sustainable Applications 634
21.3 Passivity-Based Control in Sustainable Applications 644
21.4 Model Predictive Control in Sustainable Applications 650
21.5 Conclusion 655
Acknowledgement 655
References 655
22 Optimization Techniques for Minimizing Power Loss in Radial Distribution Systems by Placing Wind and Solar Systems 659
S. Angalaeswari, D. Subbulekshmi and T. Deepa
I. Introduction 660
22.1 Distribution Systems 660
22.2 Radial Distribution Network 661
22.3 Power Loss Minimization 662
22.4 Optimization Techniques 664
22.5 MATLAB Tools for Optimization Techniques 670
22.6 Conclusion 674
References 675
Appendix 679
23 Passivity Based Control for DC-DC Converters 681
Arathy Rajeev V.K. and Ganesh Kumar S.
23.1 Introduction 681
23.2 Passivity Based Control 683
23.3 Control Law Generation Using ESDI, ESEDPOF, Etedpof 686
23.3.1 Energy Shaping and Damping Injection (ESDI) 686
23.3.2 Exact Tracking Error Dynamics Passive Output Feedback (ETEDPOF) 687
23.3.3 Exact Static Error Dynamics Passive Output Feedback 692
23.4 Control Law Generation Using ETEDPOF Method for DC Drives 692
23.4.1 Buck Converter Fed DC Motor 692
23.4.2 Boost Converter Fed DC Motor 697
23.4.3 Luo Converter Fed DC Motor 701
23.5 Sensitivity Analysis 706
23.5.1 Sensitivity Analysis of Buck Converter 707
23.5.2 Sensitivity Analysis of Boost Converter 709
23.5.3 Sensitivity Analysis of a Luo Converter 710
23.6 Reference Profile Generation 713
23.6.1 Boost Converter Fed DC Motor 713
23.6.2 Luo Converter Fed DC Motor 715
23.7 Load Torque Estimation 719
23.7.1 Reduced-Order Observer for Load Torque Estimation 719
23.7.2 SROO Approach for Load Torque Estimation 720
23.7.3 Load Torque Estimation Using Online Algebraic Approach 721
23.7.4 Sensorless Online Algebraic Approach (SAA) for Load Torque Estimation 723
23.8 Applications of PBC 724
23.9 Conclusion 726
References 728
24 Modeling, Analysis, and Design of a Fuzzy Logic Controller for Sustainable System Using MATLAB 731
T. Deepa, D. Subbulekshmi and S. Angalaeswari
24.1 Introduction 732
24.2 Modeling of MIMO System 734
24.3 Analysis of MIMO System Using MATLAB 734
24.4 Optimization Techniques for PID Parameter 742
24.4.1 Controller Design 742
24.4.1.1 PID Controller Design 742
24.4.2 Optimization of PID Controller Parameter 743
24.5 Fuzzy Logic Controller Using MATLAB/Simulink 744
24.6 Conclusion 745
References 746
25 Development of Backstepping Controller for Buck Converter 749
R. Sureshkumar and S. Ganesh Kumar
25.1 Introduction 749
25.2 Buck Converter With R-Load 751
25.2.1 Mathematical Model 752
25.2.2 Buck Converter with PMDC Motor 752
25.2.3 Mathematical Model 753
25.3 Controller Design 754
25.3.1 Basic Block Diagram for PI/Backstepping Controller 754
25.3.2 Conventional PI Controller Design 754
25.3.3 Backstepping Controller Design 756
25.3.4 Backstepping Control Algorithm 757
25.3.5 Controller Design for Buck Converter with R-Load 757
25.4 Simulation Results 766
25.5 Hardware Details 768
25.5.1 Buck Converter Specifications 771
25.5.2 Advanced Regulating Pulse Width Modulator 773
25.5.3 Principles of Operation 774
25.6 Hardware Results 775
25.7 Conclusion 777
References 778
26 Analysing Control Algorithms for Controlling the Speed of BLDC Motors Using Green IoT 779
V. Evelyn Brindha and X. Anitha Mary
26.1 Introduction 779
26.2 Working of BLDC Motor 780
26.3 Speed Control of Motor 781
26.4 Speed Control of BLDC Motor with FPGA 786
26.5 Advancements in Green IoT for BLDC Motors 786
26.6 Conclusion 787
References 787
Index 789