Physics of Solar Cells From Basic Principles to Advanced Concepts

by ;
Edition: 3rd
Format: Paperback
Pub. Date: 2016-09-13
Publisher(s): Wiley-VCH
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $94.88

Buy New

Usually Ships in 8 - 10 Business Days.
$94.79

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$85.20
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$85.20*

Used Textbook

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages.
It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible.
With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.

Author Biography

Peter Wurfel studied physics at the University of Karlsruhe where he later became Professor. His research activities started with ferroelectric thin films, mostly for pyroelectric infrared detectors. He has a keen interest in the physics of photovoltaics and has more than 25 years research and teaching experience in this field.

Uli Wurfel studied physics at the Universities of Freiburg and Heidelberg. He received a PhD from the University of Freiburg in 2006. Since 2009 he is head of the group "dye and organic solar cells" at the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg. Besides an ambition to realize low-cost organic solar cells, he is also highly interested in selective contacts and modelling solar cells.

Table of Contents

List of Symbols IX

Preface XI

1 Problems of the Energy Economy 1

1.1 Energy Economy 1

1.2 Estimate of the Maximum Reserves of Fossil Energy 4

1.3 The Greenhouse Effect 6

1.3.1 Combustion 6

1.3.2 The Temperature of the Earth 7

1.4 Problems 9

2 Photons 11

2.1 Black-body Radiation 11

2.1.1 Photon Density nγ in a Cavity (Planck’s Law of Radiation) 12

2.1.2 Energy Current Through an Area dA into the Solid Angle dΩ 16

2.1.3 Radiation from a Spherical Surface into the Solid Angle dΩ 19

2.1.4 Radiation from a Surface Element into a Hemisphere (Stefan–Boltzmann Radiation Law) 20

2.2 Kirchhoff’s Law of Radiation for Nonblack Bodies 22

2.2.1 Absorption by Semiconductors 24

2.3 The Solar Spectrum 24

2.3.1 Air Mass 26

2.4 Concentration of the Solar Radiation 28

2.4.1 The Abbé Sine Condition 29

2.4.2 Geometrical Optics 30

2.4.3 Concentration of Radiation Using the Sine Condition 31

2.5 Maximum Efficiency of Solar Energy Conversion 33

2.6 Problems 39

3 Semiconductors 41

3.1 Electrons in Semiconductors 42

3.1.1 Distribution Function for Electrons 43

3.1.2 Density of States De(εe) for Electrons 43

3.1.3 Density of Electrons 48

3.2 Holes 50

3.3 Doping 52

3.4 Quasi-Fermi Distributions 57

3.4.1 Fermi Energy and Electrochemical Potential 59

3.4.2 Work Function 63

3.5 Generation of Electrons and Holes 65

3.5.1 Absorption of Photons 65

3.5.2 Generation of Electron–Hole Pairs 69

3.6 Recombination of Electrons and Holes 71

3.6.1 Radiative Recombination, Emission of Photons 72

3.6.2 Nonradiative Recombination 74

3.6.3 Lifetimes 85

3.7 Light Emission by Semiconductors 87

3.7.1 Transition Rates and Absorption Coefficient 88

3.8 Problems 92

4 Conversion of Thermal Radiation into Chemical Energy 95

4.1 Maximum Efficiency for the Production of Chemical Energy 98

4.2 Shockley–Queisser Limit 103

4.3 Problems 104

5 Conversion of Chemical Energy into Electrical Energy 105

5.1 Transport of Electrons and Holes 105

5.1.1 Field Current 106

5.1.2 Diffusion Current 107

5.1.3 Total Charge Current 109

5.2 Separation of Electrons and Holes 111

5.3 Diffusion Length of Minority Carriers 113

5.4 Dielectric Relaxation 115

5.5 Ambipolar Diffusion 116

5.6 Dember Effect 117

5.7 Mathematical Description 120

5.8 Problems 120

6 Basic Structure of Solar Cells 123

6.1 A Chemical Solar Cell 123

6.2 Basic Mechanisms in Solar Cells 128

6.3 Dye Solar Cell 131

6.4 The pn-Junction 133

6.4.1 Electrochemical Equilibrium of Electrons in a pn-Junction in the Dark 133

6.4.2 Potential Distribution across a pn-Junction 134

6.4.3 Current–Voltage Characteristic of the pn-Junction 138

6.5 pn-Junction with Impurity Recombination, Two-Diode Model 143

6.6 Heterojunctions 147

6.7 Semiconductor–Metal Contact 150

6.7.1 Schottky Contact 152

6.7.2 MIS Contact 153

6.8 The Role of the Electric Field in Solar Cells 154

6.9 Organic Solar Cells 160

6.9.1 Excitons 160

6.9.2 Structure of Organic Solar Cells 163

6.10 Light Emitting Diodes (LED) 167

6.11 Problems 169

7 Limitations on Energy Conversion in Solar Cells 171

7.1 Maximum Efficiency of Solar Cells 171

7.2 Efficiency of Solar Cells as a Function of Their Energy Gap 174

7.3 The Optimal Silicon Solar Cell 175

7.3.1 Light Trapping 176

7.4 Thin-film Solar Cells 181

7.4.1 Minimal Thickness of a Solar Cell 182

7.5 Equivalent Circuit 183

7.6 Temperature Dependence of the Open-circuit Voltage 185

7.7 Intensity Dependence of the Efficiency 186

7.8 Efficiencies of the Individual Energy Conversion Processes 186

7.9 Problems 188

8 Concepts for Improving the Efficiency of Solar Cells 189

8.1 Tandem Cells 189

8.1.1 The Electrical Interconnection of Tandem Cells 193

8.2 Concentrator Cells 194

8.3 Thermophotovoltaic Energy Conversion 196

8.4 Impact Ionization 197

8.4.1 Hot Electrons from Impact Ionization 200

8.4.2 Energy Conversion with Hot Electrons and Holes 200

8.5 Two-step Excitation inThree-level Systems 203

8.5.1 Impurity Photovoltaic Effect 203

8.5.2 Up- and Down-conversion of Photons 208

8.6 Problems 211

9 Characterization of Solar Cells 213

9.1 Spectral Response and Quantum Efficiency 213

9.2 Quasi-Steady-State Photoconductance 218

9.3 Luminescence 220

9.3.1 Homogeneous Distribution of Electrons and Holes 221

9.3.2 Inhomogeneous Distribution of Electrons and Holes 222

9.3.3 Electroluminescence 223

9.3.4 Photoluminescence 224

9.3.5 Diffusion Length 225

9.3.6 Series Resistance 228

9.4 Thermography 229

9.5 Light-Beam-Induced Current (LBIC) 230

9.6 The Suns-VOC Method 233

9.7 Transient Techniques 237

9.7.1 Photovoltage Decay 237

9.7.2 Transient Absorption 238

9.7.3 Charge Carrier Extraction 240

9.7.4 CELIV – Charge Extraction by Linearly Increasing Voltage 241

9.7.5 Impedance Spectroscopy 241

Solutions 245

Appendix 263

References 267

Index 271

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.