|
|
1 | (18) |
|
|
1 | (6) |
|
Emergence of adaptive control |
|
|
1 | (1) |
|
Achievements of adaptive linear control |
|
|
2 | (1) |
|
Adaptive control as dynamic nonlinear feedback |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (2) |
|
Adaptive Nonlinear Control |
|
|
7 | (4) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Preview of the Main Topics |
|
|
11 | (6) |
|
Classes of nonlinear systems |
|
|
11 | (1) |
|
Adaptive backstepping and tuning functions |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (2) |
|
|
17 | (2) |
I State Feedback |
|
19 | (264) |
|
Design Tools for Stabilization |
|
|
21 | (66) |
|
|
22 | (7) |
|
|
22 | (3) |
|
Control Lyapunov functions (clf) |
|
|
25 | (4) |
|
|
29 | (29) |
|
|
29 | (8) |
|
Example: active suspension (parallel) |
|
|
37 | (2) |
|
Feedback linearization and zero dynamics |
|
|
39 | (3) |
|
Stabilization of cascade systems |
|
|
42 | (7) |
|
Block backstepping with zero dynamics |
|
|
49 | (6) |
|
Example: active suspension (series) |
|
|
55 | (3) |
|
Recursive Design Procedures |
|
|
58 | (8) |
|
|
58 | (3) |
|
|
61 | (3) |
|
Block-strict-feedback systems |
|
|
64 | (2) |
|
Design Flexibility: Jet Engine Example |
|
|
66 | (6) |
|
Jet engine stall and surge |
|
|
67 | (1) |
|
|
68 | (2) |
|
|
70 | (2) |
|
Stabilization with Uncertainty |
|
|
72 | (15) |
|
|
73 | (7) |
|
Backstepping with uncertainty |
|
|
80 | (4) |
|
Robust strict-feedback systems |
|
|
84 | (2) |
|
|
86 | (1) |
|
Adaptive Backstepping Design |
|
|
87 | (36) |
|
Adaptation as Dynamic Feedback |
|
|
88 | (4) |
|
|
92 | (7) |
|
Adaptive integrator backstepping |
|
|
92 | (6) |
|
Adaptive block backstepping |
|
|
98 | (1) |
|
Recursive Design Procedures |
|
|
99 | (11) |
|
Parametric strict-feedback systems |
|
|
99 | (4) |
|
|
103 | (2) |
|
Parametric block-strict-feedback systems |
|
|
105 | (5) |
|
|
110 | (13) |
|
Reducing the overparametrization |
|
|
110 | (3) |
|
Example: biochemical process |
|
|
113 | (2) |
|
Transient performance improvement |
|
|
115 | (6) |
|
|
121 | (2) |
|
|
123 | (62) |
|
Adaptive Control Lyapunov Functions |
|
|
124 | (15) |
|
Departure from certainty equivalence |
|
|
124 | (4) |
|
Certainty equivalence for a modified system |
|
|
128 | (6) |
|
Adaptive backstepping via aclf |
|
|
134 | (5) |
|
|
139 | (17) |
|
|
140 | (11) |
|
Stability and convergence |
|
|
151 | (3) |
|
|
154 | (2) |
|
|
156 | (9) |
|
|
157 | (5) |
|
Trajectory initialization |
|
|
162 | (3) |
|
|
165 | (3) |
|
|
165 | (1) |
|
|
166 | (2) |
|
|
168 | (12) |
|
Unknown virtual control coefficients |
|
|
168 | (5) |
|
Block-strict-feedback systems |
|
|
173 | (2) |
|
|
175 | (5) |
|
Example: Aircraft Wing Rock |
|
|
180 | (5) |
|
|
183 | (2) |
|
Modular Design with Passive Identifiers |
|
|
185 | (50) |
|
Weakness of Certainty Equivalence |
|
|
186 | (3) |
|
ISS-Control Lyapunov Functions |
|
|
189 | (9) |
|
|
198 | (8) |
|
Observers for Strict Passivity |
|
|
206 | (3) |
|
|
209 | (3) |
|
|
212 | (6) |
|
|
218 | (4) |
|
SG-Scheme (Weak Modularity) |
|
|
222 | (7) |
|
|
223 | (2) |
|
Scheme with strengthened identifier |
|
|
225 | (4) |
|
Unknown Virtual Control Coefficients |
|
|
229 | (6) |
|
|
229 | (3) |
|
|
232 | (1) |
|
|
233 | (2) |
|
Modular Design with Swapping Identifiers |
|
|
235 | (48) |
|
|
235 | (2) |
|
Swapping and Static Parametric Models |
|
|
237 | (2) |
|
|
239 | (9) |
|
|
248 | (6) |
|
|
254 | (11) |
|
|
259 | (6) |
|
|
265 | (6) |
|
Schemes with Weak ISS-Controller |
|
|
271 | (6) |
|
Unknown Virtual Control Coefficients |
|
|
277 | (6) |
|
|
282 | (1) |
II Output Feedback |
|
283 | (204) |
|
Output-Feedback Design Tools |
|
|
285 | (42) |
|
|
285 | (9) |
|
|
285 | (6) |
|
|
291 | (3) |
|
MIMO Design: Induction Motor |
|
|
294 | (7) |
|
Adaptive Observer Backstepping |
|
|
301 | (14) |
|
|
301 | (6) |
|
Parametric output-feedback systems |
|
|
307 | (6) |
|
Example: single-link flexible robot |
|
|
313 | (2) |
|
|
315 | (12) |
|
Interlaced controller-observer design |
|
|
315 | (5) |
|
Design with partial-state feedback |
|
|
320 | (4) |
|
|
324 | (3) |
|
|
327 | (44) |
|
|
329 | (19) |
|
|
329 | (3) |
|
Adaptive controller design |
|
|
332 | (8) |
|
|
340 | (6) |
|
|
346 | (2) |
|
|
348 | (17) |
|
Filtered transformations and observer |
|
|
348 | (3) |
|
Adaptive controller design |
|
|
351 | (6) |
|
|
357 | (6) |
|
|
363 | (2) |
|
|
365 | (6) |
|
|
369 | (2) |
|
|
371 | (46) |
|
|
372 | (8) |
|
|
380 | (4) |
|
|
384 | (4) |
|
|
388 | (4) |
|
Schemes with Parametric z-Model |
|
|
392 | (2) |
|
|
394 | (6) |
|
|
394 | (3) |
|
|
397 | (3) |
|
Swapping Schemes with Weak ISS-Controller |
|
|
400 | (3) |
|
|
403 | (14) |
|
|
404 | (1) |
|
|
405 | (2) |
|
|
407 | (2) |
|
|
409 | (3) |
|
|
412 | (4) |
|
|
416 | (1) |
|
|
417 | (70) |
|
|
418 | (4) |
|
|
422 | (21) |
|
|
422 | (12) |
|
|
434 | (4) |
|
|
438 | (2) |
|
|
440 | (3) |
|
Properties of the Nonadaptive System |
|
|
443 | (10) |
|
Underlying linear controller |
|
|
443 | (5) |
|
Parametric robustness and nonadaptive performance |
|
|
448 | (5) |
|
Transient Performance with Tuning Functions |
|
|
453 | (11) |
|
Transient performance of the adaptive system |
|
|
454 | (5) |
|
Performance improvement due to adaptation |
|
|
459 | (5) |
|
Comparison with a Traditional Scheme |
|
|
464 | (6) |
|
Choice of a traditional scheme |
|
|
464 | (1) |
|
Comparison of the schemes |
|
|
465 | (5) |
|
|
470 | (14) |
|
|
470 | (3) |
|
|
473 | (4) |
|
|
477 | (5) |
|
Comparison: modular vs. tuning functions design |
|
|
482 | (2) |
|
|
484 | (3) |
|
|
484 | (3) |
Appendices |
|
487 | (54) |
|
A Lyapunov Stability and Convergence |
|
|
489 | (4) |
|
|
493 | (8) |
|
C Input-to-State Stability |
|
|
501 | (6) |
|
|
507 | (4) |
|
|
511 | (4) |
|
|
515 | (6) |
|
G Differential Geometric Conditions |
|
|
521 | (20) |
|
G.1 Partial-State-Feedback Forms |
|
|
521 | (12) |
|
G.2 Output-Feedback Forms |
|
|
533 | (2) |
|
G.3 Full-State-Feedback Forms |
|
|
535 | (6) |
Bibliography |
|
541 | (18) |
Index |
|
559 | |