Preface to the First Edition |
|
ix | |
Preface to the Second Edition |
|
xiii | |
List of Symbols |
|
xv | |
1 Introduction |
|
1 | (6) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (2) |
|
|
4 | (1) |
|
Extending Number Systems, |
|
|
5 | (2) |
2 Boolean Algebras |
|
7 | (40) |
|
|
7 | (4) |
|
Number of Elements in a Set, |
|
|
11 | (2) |
|
|
13 | (3) |
|
|
16 | (3) |
|
|
19 | (2) |
|
|
21 | (2) |
|
|
23 | (3) |
|
Normal Forms and Simplification of Circuits, |
|
|
26 | (10) |
|
|
36 | (3) |
|
|
39 | (2) |
|
|
41 | (6) |
3 Groups |
|
47 | (29) |
|
|
48 | (6) |
|
|
54 | (2) |
|
Cyclic Groups and Dihedral Groups, |
|
|
56 | (4) |
|
|
60 | (3) |
|
|
63 | (4) |
|
Even and Odd Permutations, |
|
|
67 | (4) |
|
Cayley's Representation Theorem, |
|
|
71 | (1) |
|
|
71 | (5) |
4 Quotient Groups |
|
76 | (28) |
|
|
76 | (2) |
|
Cosecs and Lagrange' s Theorem, |
|
|
78 | (4) |
|
Normal Subgroups and Quotient Groups, |
|
|
82 | (4) |
|
|
86 | (5) |
|
|
91 | (3) |
|
|
94 | (2) |
|
Action of a Group on a Set, |
|
|
96 | (3) |
|
|
99 | (5) |
5 Symmetry Groups in Three Dimensions |
|
104 | (20) |
|
Translations and the Euclidean Group, |
|
|
104 | (3) |
|
|
107 | (2) |
|
Finite Groups in Two Dimensions, |
|
|
109 | (2) |
|
Proper Rotations of Regular Solids, |
|
|
111 | (5) |
|
Finite Rotation Groups in Three Dimensions, |
|
|
116 | (4) |
|
|
120 | (1) |
|
|
121 | (3) |
6 Pólya-Burnside Method of Enumeration |
|
124 | (13) |
|
|
124 | (2) |
|
|
126 | (2) |
|
|
128 | (2) |
|
Counting Switching Circuits, |
|
|
130 | (4) |
|
|
134 | (3) |
7 Monoids and Machines |
|
137 | (18) |
|
|
137 | (5) |
|
|
142 | (2) |
|
Quotient Monoids and the Monoid of a Machine, |
|
|
144 | (5) |
|
|
149 | (6) |
8 Rings and Fields |
|
155 | (25) |
|
|
155 | (4) |
|
Integral Domains and Fields, |
|
|
159 | (2) |
|
Subrings and Morphisms of Rings, |
|
|
161 | (3) |
|
|
164 | (6) |
|
|
170 | (2) |
|
|
172 | (4) |
|
|
176 | (4) |
9 Polynomial and Euclidean Rings |
|
180 | (24) |
|
|
180 | (4) |
|
|
184 | (3) |
|
|
187 | (3) |
|
Factoring Real and Complex Polynomials, |
|
|
190 | (2) |
|
Factoring Rational and Integral Polynomials, |
|
|
192 | (3) |
|
Factoring Polynomials over Finite Fields, |
|
|
195 | (2) |
|
Linear Congruences and the Chinese Remainder Theorem, |
|
|
197 | (4) |
|
|
201 | (3) |
10 Quotient Rings |
|
204 | (14) |
|
Ideals and Quotient Rings, |
|
|
204 | (3) |
|
Computations in Quotient Rings, |
|
|
207 | (2) |
|
|
209 | (1) |
|
Quotient Polynomial Rings That Are Fields, |
|
|
210 | (4) |
|
|
214 | (4) |
11 Field Extensions |
|
218 | (18) |
|
|
218 | (3) |
|
|
221 | (4) |
|
|
225 | (3) |
|
|
228 | (4) |
|
|
232 | (4) |
12 Latin Squares |
|
236 | (15) |
|
|
236 | (2) |
|
Orthogonal Latin Squares, |
|
|
238 | (4) |
|
|
242 | (3) |
|
|
245 | (4) |
|
|
249 | (2) |
13 Geometrical Constructions |
|
251 | (13) |
|
|
251 | (5) |
|
|
256 | (1) |
|
|
257 | (2) |
|
|
259 | (1) |
|
Constructing Regular Polygons, |
|
|
259 | (1) |
|
Nonconstructible Number of Degree 4, |
|
|
260 | (2) |
|
|
262 | (2) |
14 Error-Correcting Codes |
|
264 | (29) |
|
|
266 | (1) |
|
|
267 | (3) |
|
Polynomial Representation, |
|
|
270 | (6) |
|
|
276 | (4) |
|
Error Correcting and Decoding, |
|
|
280 | (4) |
|
|
284 | (4) |
|
|
288 | (5) |
Appendix 1: Proofs |
|
293 | (3) |
Appendix 2: Integers |
|
296 | (10) |
Bibliography and References |
|
306 | (3) |
Answers to Odd-Numbered Exercises |
|
309 | (14) |
Index |
|
323 | |