|
|
|
1 | (8) |
|
What Are Linear Mixed Models (LMMs)? |
|
|
1 | (4) |
|
Models with Random Effects for Clustered Data |
|
|
2 | (1) |
|
Models for Longitudinal or Repeated-Measures Data |
|
|
2 | (1) |
|
|
|
3 | (1) |
|
|
|
4 | (1) |
|
|
|
5 | (4) |
|
Key Theoretical Developments |
|
|
5 | (2) |
|
Key Software Developments |
|
|
7 | (2) |
|
Linear Mixed Models: An Overview |
|
|
9 | (42) |
|
|
|
9 | (6) |
|
Types and Structures of Data Sets |
|
|
9 | (1) |
|
Clustered Data vs. Repeated-Measures and Longitudinal Data |
|
|
9 | (1) |
|
|
|
10 | (1) |
|
Types of Factors and their Related Effects in an LMM |
|
|
11 | (1) |
|
|
|
12 | (1) |
|
|
|
12 | (1) |
|
Fixed Factors vs. Random Factors |
|
|
12 | (1) |
|
Fixed Effects vs. Random Effects |
|
|
13 | (1) |
|
Nested vs. Crossed Factors and their Corresponding Effects |
|
|
13 | (2) |
|
|
|
15 | (7) |
|
General Specification for an Individual Observation |
|
|
15 | (1) |
|
General Matrix Specification |
|
|
16 | (3) |
|
Covariance Structures for the D Matrix |
|
|
19 | (1) |
|
Covariance Structures for the Ri Matrix |
|
|
20 | (1) |
|
Group-Specific Covariance Parameter Values for the D and Ri Matrices |
|
|
21 | (1) |
|
Alternative Matrix Specification for All Subjects |
|
|
21 | (1) |
|
Hierarchical Linear Model (HLM) Specification of the LMM |
|
|
22 | (1) |
|
The Marginal Linear Model |
|
|
22 | (3) |
|
Specification of the Marginal Model |
|
|
22 | (1) |
|
The Marginal Model Implied by an LMM |
|
|
23 | (2) |
|
|
|
25 | (5) |
|
Maximum Likelihood (ML) Estimation |
|
|
25 | (1) |
|
Special Case: Assume θ is Known |
|
|
26 | (1) |
|
General Case: Assume θ is Unknown |
|
|
27 | (1) |
|
|
|
28 | (1) |
|
|
|
28 | (2) |
|
|
|
30 | (3) |
|
Algorithms for Likelihood Function Optimization |
|
|
30 | (1) |
|
Computational Problems with Estimation of Covariance Parameters |
|
|
31 | (2) |
|
Tools for Model Selection |
|
|
33 | (6) |
|
Basic Concepts in Model Selection |
|
|
34 | (1) |
|
|
|
34 | (1) |
|
Hypotheses: Specification and Testing |
|
|
34 | (1) |
|
Likelihood Ratio Tests (LRTs) |
|
|
34 | (1) |
|
Likelihood Ratio Tests for Fixed-Effect Parameters |
|
|
35 | (1) |
|
Likelihood Ratio Tests for Covariance Parameters |
|
|
35 | (1) |
|
|
|
36 | (1) |
|
Alternative Tests for Fixed-Effect Parameters |
|
|
37 | (1) |
|
Alternative Tests for Covariance Parameters |
|
|
38 | (1) |
|
|
|
38 | (1) |
|
Model-Building Strategies |
|
|
39 | (2) |
|
|
|
39 | (1) |
|
|
|
40 | (1) |
|
Checking Model Assumptions (Diagnostics) |
|
|
41 | (2) |
|
|
|
41 | (1) |
|
|
|
41 | (1) |
|
Standardized and Studentized Residuals |
|
|
42 | (1) |
|
|
|
42 | (1) |
|
Diagnostics for Random Effects |
|
|
43 | (1) |
|
|
|
43 | (6) |
|
Predicting Random Effects: Best Linear Unbiased Predictors |
|
|
43 | (2) |
|
Intraclass Correlation Coefficients (ICCs) |
|
|
45 | (1) |
|
Problems with Model Specification (Aliasing) |
|
|
46 | (2) |
|
|
|
48 | (1) |
|
|
|
49 | (1) |
|
|
|
49 | (2) |
|
Two-Level Models for Clustered Data: The Rat Pup Example |
|
|
51 | (64) |
|
|
|
51 | (1) |
|
|
|
51 | (7) |
|
|
|
51 | (3) |
|
|
|
54 | (4) |
|
Overview of the Rat Pup Data Analysis |
|
|
58 | (8) |
|
|
|
58 | (2) |
|
|
|
60 | (1) |
|
General Model Specification |
|
|
60 | (2) |
|
Hierarchical Model Specification |
|
|
62 | (1) |
|
|
|
63 | (3) |
|
Analysis Steps in the Software Procedures |
|
|
66 | (24) |
|
|
|
66 | (8) |
|
|
|
74 | (3) |
|
|
|
77 | (5) |
|
|
|
82 | (3) |
|
|
|
85 | (1) |
|
|
|
85 | (1) |
|
Preparing the Multivariate Data Matrix (MDM) File |
|
|
86 | (4) |
|
Results of Hypothesis Tests |
|
|
90 | (2) |
|
Likelihood Ratio Tests for Random Effects |
|
|
90 | (1) |
|
Likelihood Ratio Tests for Residual Variance |
|
|
91 | (1) |
|
F-tests and Likelihood Ratio Tests for Fixed Effects |
|
|
91 | (1) |
|
Comparing Results across the Software Procedures |
|
|
92 | (4) |
|
Comparing Model 3.1 Results |
|
|
92 | (2) |
|
Comparing Model 3.2B Results |
|
|
94 | (1) |
|
Comparing Model 3.3 Results |
|
|
95 | (1) |
|
Interpreting Parameter Estimates in the Final Model |
|
|
96 | (2) |
|
Fixed-Effect Parameter Estimates |
|
|
96 | (1) |
|
Covariance Parameter Estimates |
|
|
97 | (1) |
|
Estimating the Intraclass Correlation Coefficients (ICCs) |
|
|
98 | (2) |
|
Calculating Predicted Values |
|
|
100 | (2) |
|
Litter-Specific (Conditional) Predicted Values |
|
|
100 | (1) |
|
Population-Averaged (Unconditional) Predicted Values |
|
|
101 | (1) |
|
Diagnostics for the Final Model |
|
|
102 | (6) |
|
|
|
102 | (1) |
|
|
|
102 | (2) |
|
Conditional Studentized Residuals |
|
|
104 | (2) |
|
|
|
106 | (1) |
|
Overall and Fixed-Effects Influence Diagnostics |
|
|
106 | (1) |
|
Influence on Covariance Parameters |
|
|
107 | (1) |
|
|
|
108 | (7) |
|
|
|
108 | (1) |
|
|
|
109 | (1) |
|
Heterogeneous Residual Variances for Level 2 Groups |
|
|
109 | (1) |
|
Display of the Marginal Covariance and Correlation Matrices |
|
|
109 | (1) |
|
Differences in Model Fit Criteria |
|
|
109 | (1) |
|
Differences in Tests for Fixed Effects |
|
|
110 | (1) |
|
Post-Hoc Comparisons of LS Means (Estimated Marginal Means) |
|
|
111 | (1) |
|
Calculation of Studentized Residuals and Influence Statistics |
|
|
112 | (1) |
|
|
|
112 | (1) |
|
Tests for Covariance Parameters |
|
|
112 | (1) |
|
Refeernce Categories for Fixed Factors |
|
|
112 | (3) |
|
Three-Level Models for Clustered Data: The Classroom Example |
|
|
115 | (60) |
|
|
|
115 | (2) |
|
|
|
117 | (5) |
|
|
|
117 | (1) |
|
|
|
118 | (1) |
|
|
|
119 | (1) |
|
Preparing the Multivariate Data Matrix (MDM) File |
|
|
119 | (3) |
|
Overview of the Classroom Data Analysis |
|
|
122 | (8) |
|
|
|
122 | (3) |
|
|
|
125 | (1) |
|
General Model Specification |
|
|
125 | (1) |
|
Hierarchical Model Specification |
|
|
126 | (2) |
|
|
|
128 | (2) |
|
Analysis Steps in the Software Procedures |
|
|
130 | (23) |
|
|
|
130 | (6) |
|
|
|
136 | (5) |
|
|
|
141 | (3) |
|
|
|
144 | (3) |
|
|
|
147 | (6) |
|
Results of Hypothesis Tests |
|
|
153 | (2) |
|
Likelihood Ratio Test for Random Effects |
|
|
153 | (1) |
|
Likelihood Ratio Tests and t-Tests for Fixed Effects |
|
|
154 | (1) |
|
Comparing Results across the Software Procedures |
|
|
155 | (4) |
|
Comparing Model 4.1 Results |
|
|
155 | (1) |
|
Comparing Model 4.2 Results |
|
|
156 | (1) |
|
Comparing Model 4.3 Results |
|
|
157 | (2) |
|
Comparing Model 4.4 Results |
|
|
159 | (1) |
|
Interpreting Parameter Estimates in the Final Model |
|
|
159 | (3) |
|
Fixed-Effect Parameter Estimates |
|
|
159 | (2) |
|
Covariance Parameter Estimates |
|
|
161 | (1) |
|
Estimating the Intraclass Correlation Coefficients (ICCs) |
|
|
162 | (3) |
|
Calculating Predicted Values |
|
|
165 | (2) |
|
Conditional and Marginal Predicted Values |
|
|
165 | (1) |
|
Plotting Predicted Values Using HLM |
|
|
166 | (1) |
|
Diagnostics for the Final Model |
|
|
167 | (4) |
|
|
|
167 | (2) |
|
|
|
169 | (2) |
|
|
|
171 | (4) |
|
|
|
171 | (1) |
|
Setting up Three-Level Models in HLM |
|
|
171 | (1) |
|
Calculation of Degrees of Freedom for t-Tests in HLM |
|
|
171 | (1) |
|
Analyzing Cases with Complete Data |
|
|
172 | (1) |
|
Miscellaneous Differences |
|
|
173 | (2) |
|
Models for Repeated-Measures Data: The Rat Brain Example |
|
|
175 | (44) |
|
|
|
175 | (1) |
|
|
|
176 | (4) |
|
|
|
176 | (2) |
|
|
|
178 | (2) |
|
Overview of the Rat Brain Data Analysis |
|
|
180 | (7) |
|
|
|
180 | (2) |
|
|
|
182 | (1) |
|
General Model Specification |
|
|
182 | (2) |
|
Hierarchical Model Specification |
|
|
184 | (1) |
|
|
|
185 | (2) |
|
Analysis Steps in the Software Procedures |
|
|
187 | (16) |
|
|
|
187 | (3) |
|
|
|
190 | (3) |
|
|
|
193 | (2) |
|
|
|
195 | (3) |
|
|
|
198 | (1) |
|
|
|
198 | (1) |
|
|
|
199 | (4) |
|
Results of Hypothesis Tests |
|
|
203 | (1) |
|
Likelihood Ratio Tests for Random Effects |
|
|
203 | (1) |
|
Likelihood Ratio Tests for Residual Variance |
|
|
203 | (1) |
|
F-Tests for Fixed Effects |
|
|
204 | (1) |
|
Comparing Results across the Software Procedures |
|
|
204 | (3) |
|
Comparing Model 5.1 Results |
|
|
204 | (2) |
|
Comparing Model 5.2 Results |
|
|
206 | (1) |
|
Interpreting Parameter Estimates in the Final Model |
|
|
207 | (2) |
|
Fixed-Effect Parameter Estimates |
|
|
207 | (2) |
|
Covariance Parameter Estimates |
|
|
209 | (1) |
|
The Implied Marginal Variance-Covariance Matrix for the Final Model |
|
|
209 | (2) |
|
Diagnostics for the Final Model |
|
|
211 | (3) |
|
|
|
214 | (1) |
|
Heterogeneous Residual Variances for Level 1 Groups |
|
|
214 | (1) |
|
EBLUPs for Multiple Random Effects |
|
|
214 | (1) |
|
Other Analytic Approaches |
|
|
214 | (5) |
|
Kronecker Product for More Flexible Residual Covariance Structures |
|
|
214 | (2) |
|
Fitting the Marginal Model |
|
|
216 | (1) |
|
|
|
217 | (2) |
|
Random Coefficient Models for Longitudinal Data: The Autism Example |
|
|
219 | (54) |
|
|
|
219 | (1) |
|
|
|
220 | (5) |
|
|
|
220 | (1) |
|
|
|
221 | (4) |
|
Overview of the Autism Data Analysis |
|
|
225 | (7) |
|
|
|
226 | (1) |
|
|
|
227 | (1) |
|
General Model Specification |
|
|
227 | (2) |
|
Hierarchical Model Specification |
|
|
229 | (1) |
|
|
|
230 | (2) |
|
Analysis Steps in the Software Procedures |
|
|
232 | (19) |
|
|
|
232 | (4) |
|
|
|
236 | (4) |
|
|
|
240 | (3) |
|
|
|
243 | (3) |
|
|
|
246 | (1) |
|
|
|
246 | (1) |
|
|
|
246 | (5) |
|
Results of Hypothesis Tests |
|
|
251 | (2) |
|
Likelihood Ratio Test for Random Effects |
|
|
251 | (1) |
|
Likelihood Ratio Tests for Fixed Effects |
|
|
252 | (1) |
|
Comparing Results across the Software Procedures |
|
|
253 | (1) |
|
Comparing Model 6.1 Results |
|
|
253 | (1) |
|
Comparing Model 6.2 Results |
|
|
253 | (1) |
|
Comparing Model 6.3 Results |
|
|
253 | (1) |
|
Interpreting Parameter Estimates in the Final Model |
|
|
254 | (5) |
|
Fixed-Effect Parameter Estimates |
|
|
256 | (1) |
|
Covariance Parameter Estimates |
|
|
257 | (2) |
|
Calculating Predicted Values |
|
|
259 | (4) |
|
Marginal Predicted Values |
|
|
259 | (2) |
|
Conditional Predicted Values |
|
|
261 | (2) |
|
Diagnostics for the Final Model |
|
|
263 | (5) |
|
|
|
263 | (2) |
|
Diagnostics for the Random Effects |
|
|
265 | (1) |
|
Observed and Predicted Values |
|
|
266 | (2) |
|
Software Note: Computational Problems with the D Matrix |
|
|
268 | (1) |
|
An Alternative Approach: Fitting the Marginal Model with an Unstructured Covariance Matrix |
|
|
268 | (5) |
|
Models for Clustered Longitudinal Data: The Dental Veneer Example |
|
|
273 | (56) |
|
|
|
273 | (1) |
|
|
|
274 | (3) |
|
|
|
274 | (1) |
|
|
|
275 | (2) |
|
Overview of the Dental Veneer Data Analysis |
|
|
277 | (10) |
|
|
|
278 | (2) |
|
|
|
280 | (1) |
|
General Model Specification |
|
|
280 | (4) |
|
Hierarchical Model Specification |
|
|
284 | (1) |
|
|
|
285 | (2) |
|
Analysis Steps in the Software Procedures |
|
|
287 | (22) |
|
|
|
287 | (6) |
|
|
|
293 | (3) |
|
|
|
296 | (4) |
|
|
|
300 | (4) |
|
|
|
304 | (1) |
|
|
|
304 | (1) |
|
Preparing the Multivariate Data Matrix (MDM) File |
|
|
304 | (5) |
|
Results of Hypothesis Tests |
|
|
309 | (1) |
|
Likelihood Ratio Tests for Random Effects |
|
|
309 | (1) |
|
Likelihood Ratio Tests for Residual Variance |
|
|
310 | (1) |
|
Likelihood Ratio Tests for Fixed Effects |
|
|
310 | (1) |
|
Comparing Results across the Software Procedures |
|
|
310 | (5) |
|
Comparing Model 7.1 Results |
|
|
310 | (2) |
|
Comparing Software Results for Model 7.2A, Model 7.2B, and Model 7.2C |
|
|
312 | (2) |
|
Comparing Model 7.3 Results |
|
|
314 | (1) |
|
Interpreting Parameter Estimates in the Final Model |
|
|
315 | (2) |
|
Fixed-Effect Parameter Estimates |
|
|
315 | (1) |
|
Covariance Parameter Estimates |
|
|
316 | (1) |
|
The Implied Marginal Variance-Covariance Matrix for the Final Model |
|
|
317 | (2) |
|
Diagnostics for the Final Model |
|
|
319 | (4) |
|
|
|
319 | (2) |
|
Diagnostics for the Random Effects |
|
|
321 | (2) |
|
|
|
323 | (3) |
|
|
|
323 | (1) |
|
The Ability to Remove Random Effects from a Model |
|
|
324 | (1) |
|
The Ability to Fit Models with Different Residual Covariance Structures |
|
|
324 | (1) |
|
Aliasing of Covariance Parameters |
|
|
324 | (1) |
|
Displaying the Marginal Covariance and Correlation Matrices |
|
|
325 | (1) |
|
Miscellaneous Software Notes |
|
|
325 | (1) |
|
Other Analytic Approaches |
|
|
326 | (3) |
|
Modeling the Covariance Structure |
|
|
326 | (1) |
|
The Step-Up vs. Step-Down Approach to Model Building |
|
|
327 | (1) |
|
Alternative Uses of Baseline Values for the Dependent Variable |
|
|
327 | (2) |
|
Appendix A Statistical Software Resources |
|
|
329 | (4) |
|
Descriptions/Availability of Software Packages |
|
|
329 | (1) |
|
|
|
329 | (1) |
|
|
|
329 | (1) |
|
|
|
329 | (1) |
|
|
|
330 | (1) |
|
|
|
330 | (1) |
|
|
|
330 | (3) |
|
Appendix B Calculation of the Marginal Variance-Covariance Matrix |
|
|
333 | (2) |
|
Appendix C Acronyms/Abbreviations |
|
|
335 | (2) |
| References |
|
337 | (4) |
| Index |
|
341 | |