List of Tables |
|
xi | |
Notation |
|
xiii | |
Introduction |
|
xv | |
1 Integral Domains |
|
1 | (26) |
|
|
1 | (4) |
|
1.2 Irreducibles and Primes |
|
|
5 | (3) |
|
|
8 | (2) |
|
1.4 Principal Ideal Domains |
|
|
10 | (6) |
|
1.5 Maximal Ideals and Prime Ideals |
|
|
16 | (5) |
|
1.6 Sums and Products of Ideals |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
25 | (2) |
2 Euclidean Domains |
|
27 | (27) |
|
|
27 | (3) |
|
2.2 Examples of Euclidean Domains |
|
|
30 | (7) |
|
2.3 Examples of Domains That are Not Euclidean |
|
|
37 | (9) |
|
2.4 Almost Euclidean Domains |
|
|
46 | (1) |
|
2.5 Representing Primes by Binary Quadratic Forms |
|
|
47 | (2) |
|
|
49 | (2) |
|
|
51 | (2) |
|
|
53 | (1) |
3 Noetherian Domains |
|
54 | (20) |
|
|
54 | (3) |
|
3.2 Factorization Domains |
|
|
57 | (3) |
|
3.3 Unique Factorization Domains |
|
|
60 | (4) |
|
|
64 | (3) |
|
|
67 | (4) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
4 Elements Integral over a Domain |
|
74 | (14) |
|
4.1 Elements Integral over a Domain |
|
|
74 | (7) |
|
|
81 | (5) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
5 Algebraic Extensions of a Field |
|
88 | (21) |
|
5.1 Minimal Polynomial of an Element Algebraic over a Field |
|
|
88 | (2) |
|
5.2 Conjugates of α over Κ |
|
|
90 | (1) |
|
5.3 Conjugates of an Algebraic Integer |
|
|
91 | (3) |
|
5.4 Algebraic Integers in a Quadratic Field |
|
|
94 | (4) |
|
|
98 | (4) |
|
|
102 | (4) |
|
|
106 | (2) |
|
|
108 | (1) |
|
|
108 | (1) |
6 Algebraic Number Fields |
|
109 | (32) |
|
6.1 Algebraic Number Fields |
|
|
109 | (3) |
|
6.2 Conjugate Fields of an Algebraic Number Field |
|
|
112 | (4) |
|
6.3 The Field Polynomial of an Element of an Algebraic Number Field |
|
|
116 | (7) |
|
6.4 The Discriminant of a set of Elements in an Algebraic Number Field |
|
|
123 | (6) |
|
|
129 | (8) |
|
6.6 Prime Ideals in Rings of Integers |
|
|
137 | (1) |
|
|
138 | (2) |
|
|
140 | (1) |
|
|
140 | (1) |
7 Integral Bases |
|
141 | (53) |
|
7.1 Integral Basis of an Algebraic Number Field |
|
|
141 | (19) |
|
|
160 | (10) |
|
7.3 Some Integral Bases in Cubic Fields |
|
|
170 | (8) |
|
7.4 Index and Minimal Index of an Algebraic Number Field |
|
|
178 | (8) |
|
7.5 Integral Basis of a Cyclotomic Field |
|
|
186 | (3) |
|
|
189 | (2) |
|
|
191 | (2) |
|
|
193 | (1) |
8 Dedekind Domains |
|
194 | (24) |
|
|
194 | (1) |
|
8.2 Ideals in a Dedekind Domain |
|
|
195 | (5) |
|
8.3 Factorization into Prime Ideals |
|
|
200 | (6) |
|
8.4 Order of an Ideal with Respect to a Prime Ideal |
|
|
206 | (9) |
|
8.5 Generators of Ideals in a Dedekind Domain |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
9 Norms of Ideals |
|
218 | (18) |
|
9.1 Norm of an Integral Ideal |
|
|
218 | (4) |
|
9.2 Norm and Trace of an Element |
|
|
222 | (6) |
|
9.3 Norm of a Product of Ideals |
|
|
228 | (3) |
|
9.4 Norm of a Fractional Ideal |
|
|
231 | (2) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
10 Factoring Primes in a Number Field |
|
236 | (28) |
|
10.1 Norm of a Prime Ideal |
|
|
236 | (5) |
|
10.2 Factoring Primes in a Quadratic Field |
|
|
241 | (8) |
|
10.3 Factoring Primes in a Monogenic Number Field |
|
|
249 | (4) |
|
10.4 Some Factorizations in Cubic Fields |
|
|
253 | (4) |
|
10.5 Factoring Primes in an Arbitrary Number Field |
|
|
257 | (3) |
|
10.6 Factoring Primes in a Cyclotomic Field |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (2) |
11 Units in Real Quadratic Fields |
|
264 | (35) |
|
|
264 | (3) |
|
11.2 The Equation x2-y2=1 |
|
|
267 | (4) |
|
|
271 | (4) |
|
|
275 | (3) |
|
11.5 The Fundamental Unit |
|
|
278 | (8) |
|
11.6 Calculating the Fundamental Unit |
|
|
286 | (8) |
|
11.7 The Equation x2-my2=N |
|
|
294 | (3) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
12 The Ideal Class Group |
|
299 | (45) |
|
|
299 | (1) |
|
12.2 Minkowski's Translate Theorem |
|
|
300 | (5) |
|
12.3 Minkowski's Convex Body Theorem |
|
|
305 | (1) |
|
12.4 Minkowski's Linear Forms Theorem |
|
|
306 | (5) |
|
12.5 Finiteness of the Ideal Class Group |
|
|
311 | (3) |
|
12.6 Algorithm to Determine the Ideal Class Group |
|
|
314 | (17) |
|
12.7 Applications to Binary Quadratic Forms |
|
|
331 | (10) |
|
|
341 | (2) |
|
|
343 | (1) |
|
|
343 | (1) |
13 Dirichlet's Unit Theorem |
|
344 | (41) |
|
13.1 Valuations of an Element of a Number Field |
|
|
344 | (2) |
|
13.2 Properties of Valuations |
|
|
346 | (13) |
|
13.3 Proof of Dirichlet's Unit Theorem |
|
|
359 | (2) |
|
13.4 Fundamental System of Units |
|
|
361 | (2) |
|
|
363 | (6) |
|
13.6 Fundamental Units in Cubic Fields |
|
|
369 | (9) |
|
|
378 | (4) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
14 Applications to Diophantine Equations |
|
385 | (28) |
|
14.1 Insolvability of y2=x3+k Using Congruence Considerations |
|
|
385 | (4) |
|
14.2 Solving y2=x3+k Using Algebraic Numbers |
|
|
389 | (12) |
|
14.3 The Diophantine Equation y(y+1)=x(x+1)(x+2) |
|
|
401 | (9) |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
411 | (2) |
List of Definitions |
|
413 | (4) |
Location of Theorems |
|
417 | (4) |
Location of Lemmas |
|
421 | (2) |
Bibliography |
|
423 | (2) |
Index |
|
425 | |