Preface |
|
vii | |
List of Code Examples |
|
xix | |
1 Linear and Quadratic Programming |
|
1 | (34) |
|
1.1 Linear Programming: Testing for Arbitrage |
|
|
1 | (5) |
|
1.2 Quadratic Programming: Balancing Risk and Return |
|
|
6 | (11) |
|
1.3 Dual Variables and the Impact of Constraints |
|
|
17 | (7) |
|
1.4 Analysis of the Efficient Frontier |
|
|
24 | (6) |
|
|
30 | (2) |
|
|
32 | (3) |
2 General Optimization with SIMPLE |
|
35 | (46) |
|
2.1 Indexing Parameters and Variables |
|
|
35 | (10) |
|
2.2 Function Optimization |
|
|
45 | (5) |
|
2.3 Maximum Likelihood Optimization |
|
|
50 | (4) |
|
|
54 | (7) |
|
2.5 Multistage Stochastic Programming |
|
|
61 | (8) |
|
2.6 Optimization within S-PLUS |
|
|
69 | (10) |
|
|
79 | (1) |
|
|
80 | (1) |
3 Advanced Issues in Mean-Variance Optimization |
|
81 | (28) |
|
3.1 Nonstandard Implementations |
|
|
81 | (9) |
|
3.2 Portfolio Construction and Mixed-Integer Programming |
|
|
90 | (8) |
|
|
98 | (8) |
|
|
106 | (2) |
|
|
108 | (1) |
4 Resampling and Portfolio Choice |
|
109 | (32) |
|
|
109 | (5) |
|
4.2 Resampling Long-Only Portfolios |
|
|
114 | (1) |
|
4.3 Introduction of a Special Lottery Ticket |
|
|
115 | (5) |
|
4.4 Distribution of Portfolio Weights |
|
|
120 | (6) |
|
4.5 Theoretical Deficiencies of Portfolio Construction via Resampling |
|
|
126 | (3) |
|
4.6 Bootstrap Estimation of Error in Risk-Return Ratios |
|
|
129 | (7) |
|
|
136 | (3) |
|
|
139 | (2) |
5 Scenario Optimization: Addressing Non-normality |
|
141 | (54) |
|
5.1 Scenario Optimization |
|
|
141 | (12) |
|
5.2 Mean Absolute Deviation |
|
|
153 | (5) |
|
5.3 Semi-variance and Generalized Semi-variance Optimization |
|
|
158 | (6) |
|
5.4 Probability-Based Risk/Return Measures |
|
|
164 | (6) |
|
|
170 | (4) |
|
5.6 Conditional Value-at-Risk |
|
|
174 | (15) |
|
5.7 CDO Valuation using Scenario Optimization |
|
|
189 | (4) |
|
|
193 | (1) |
|
|
194 | (1) |
6 Robust Statistical Methods for Portfolio Construction |
|
195 | (104) |
|
6.1 Outliers and Non-normal Returns |
|
|
195 | (5) |
|
6.2 Robust Statistics versus Classical Statistics |
|
|
200 | (2) |
|
6.3 Robust Estimates of Mean Returns |
|
|
202 | (7) |
|
6.4 Robust Estimates of Volatility |
|
|
209 | (9) |
|
|
218 | (3) |
|
6.6 Robust Correlations and Covariances |
|
|
221 | (5) |
|
6.7 Robust Distances for Determining Normal Times versus Hectic Times |
|
|
226 | (7) |
|
6.8 Robust Covariances and Distances with Different Return Histories |
|
|
233 | (5) |
|
6.9 Robust Portfolio Optimization |
|
|
238 | (23) |
|
6.10 Conditional Value-at-Risk Frontiers: Classical and Robust |
|
|
261 | (15) |
|
6.11 Influence Functions for Portfolios |
|
|
276 | (18) |
|
|
294 | (3) |
|
|
297 | (2) |
7 Bayes Methods |
|
299 | (94) |
|
7.1 The Bayesian Modeling Paradigm |
|
|
299 | (4) |
|
7.2 Bayes Models for the Mean and Volatility of Returns |
|
|
303 | (43) |
|
7.3 Bayes Linear Regression Models |
|
|
346 | (13) |
|
7.4 Black-Litterman Models |
|
|
359 | (16) |
|
7.5 Bayes-Stein Estimators of Mean Returns |
|
|
375 | (5) |
|
7.6 Appendix 7A: Inverse Chi-Squared Distributions |
|
|
380 | (4) |
|
7.7 Appendix 7B: Posterior Distributions for Normal Likelihood Conjugate Priors |
|
|
384 | (1) |
|
7.8 Appendix 7C: Derivation of the Posterior for Jorion's Empirical Bayes Estimate |
|
|
384 | (3) |
|
|
387 | (2) |
|
|
389 | (4) |
Bibliography |
|
393 | (8) |
Index |
|
401 | |