|
|
1 | (16) |
|
Why ``Intelligent Data Analysis''? |
|
|
1 | (3) |
|
How the Computer Is Changing Things |
|
|
4 | (4) |
|
|
8 | (4) |
|
Modern Data Analytic Tools |
|
|
12 | (2) |
|
|
14 | (3) |
|
|
17 | (52) |
|
|
17 | (1) |
|
|
18 | (11) |
|
Sampling and Sampling Distributions |
|
|
29 | (4) |
|
|
33 | (13) |
|
Prediction and Prediction Error |
|
|
46 | (11) |
|
|
57 | (11) |
|
|
68 | (1) |
|
|
69 | (62) |
|
|
69 | (1) |
|
Generalized Linear Models |
|
|
70 | (23) |
|
Special Topics in Regression Modelling |
|
|
93 | (7) |
|
Classical Multivariate Analysis |
|
|
100 | (29) |
|
|
129 | (2) |
|
|
131 | (38) |
|
|
131 | (1) |
|
|
132 | (3) |
|
|
135 | (8) |
|
|
143 | (10) |
|
|
153 | (14) |
|
|
167 | (2) |
|
Support Vector and Kernel Methods |
|
|
169 | (30) |
|
Example: Kernel Perceptron |
|
|
170 | (6) |
|
Overfitting and Generalization Bounds |
|
|
176 | (5) |
|
|
181 | (13) |
|
|
194 | (2) |
|
|
196 | (3) |
|
|
199 | (30) |
|
|
199 | (3) |
|
|
202 | (5) |
|
Nonlinear Dynamics Basics |
|
|
207 | (6) |
|
Delay-Coordinate Embedding |
|
|
213 | (5) |
|
|
218 | (8) |
|
|
226 | (3) |
|
|
229 | (40) |
|
|
229 | (3) |
|
Propositional rule learning |
|
|
232 | (4) |
|
|
236 | (6) |
|
Evaluating the quality of rules |
|
|
242 | (4) |
|
Propositional rule induction at work |
|
|
246 | (4) |
|
Learning first-order rules |
|
|
250 | (12) |
|
|
262 | (5) |
|
|
267 | (2) |
|
|
269 | (52) |
|
|
269 | (1) |
|
|
270 | (8) |
|
Multilayer Feedforward Neural Networks |
|
|
278 | (5) |
|
Learning and Generalization |
|
|
283 | (9) |
|
Radial Basis Function Networks |
|
|
292 | (8) |
|
|
300 | (7) |
|
Principal Components Analysis and Neural Networks |
|
|
307 | (5) |
|
|
312 | (7) |
|
|
319 | (2) |
|
|
321 | (30) |
|
|
321 | (1) |
|
Basics of Fuzzy Sets and Fuzzy Logic |
|
|
322 | (14) |
|
Extracting Fuzzy Models from Data |
|
|
336 | (10) |
|
|
346 | (4) |
|
|
350 | (1) |
|
Stochastic Search Methods |
|
|
351 | (52) |
|
|
351 | (3) |
|
Stochastic Search by Simulated Annealing |
|
|
354 | (6) |
|
Stochastic, Adaptive Search by Evolution |
|
|
360 | (2) |
|
|
362 | (12) |
|
|
374 | (16) |
|
|
390 | (10) |
|
|
400 | (3) |
|
|
403 | (26) |
|
|
403 | (2) |
|
Classification of Visual Data Analysis Techniques |
|
|
405 | (1) |
|
Data Type to be Visualized |
|
|
406 | (5) |
|
|
411 | (3) |
|
|
414 | (4) |
|
Specific Visual Data Analysis Techniques |
|
|
418 | (8) |
|
|
426 | (3) |
|
|
429 | (16) |
|
|
429 | (1) |
|
Diversity of IDA Applications |
|
|
430 | (6) |
|
Several Development Issues |
|
|
436 | (6) |
|
|
442 | (3) |
|
|
445 | (20) |
|
A.1 Tools for statistical analysis |
|
|
445 | (2) |
|
A.2 Tools for exploration/modeling |
|
|
447 | (7) |
|
A.3 Tools for Text and Web Mining |
|
|
454 | (2) |
|
|
456 | (8) |
|
|
464 | (1) |
|
Appendix B: Information-Theoretic Tree and Rule Induction |
|
|
465 | (10) |
|
B.1 Information and Uncertainty |
|
|
465 | (3) |
|
B.2 Decision Tree Induction |
|
|
468 | (2) |
|
|
470 | (5) |
References |
|
475 | (26) |
Index |
|
501 | (12) |
Author Addresses |
|
513 | |