Fundamentals of Heat Exchanger Design

by ;
Edition: 2nd
Format: Hardcover
Pub. Date: 2023-10-10
Publisher(s): Wiley
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $160.00

Buy New

Usually Ships in 3-4 Business Days
$159.84

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$144.00
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$144.00*

Used Textbook

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Fundamentals of Heat Exchanger Design, Second Edition builds upon the widely-used First Edition, a text often considered to be the most prominent single-volume heat exchanger text on the market. The new and improved Second Edition serves as an equally comprehensive resource, updated to suit the latest technologies and design methods being used in the Heat Exchanger field. Written by First-Edition author Dusan P. Sekulic, this text addresses the latest developments in the industry, including a brand-new chapter on the manufacturing of compact heat exchangers. After opening with a basic introduction to heat exchanger types and design methods, the book goes on to cover more specialized topics such as such as the design of recuperators and regenerators, pressure drop analysis, geometric properties, flow friction, fouling and corrosion, and more.  With many significant revisions throughout, this new edition offers more streamlined content while maintaining the consistent, detailed coverage of the fundamentals of the topic that readers appreciated in the First Edition. These unique features position the Second Edition of Fundamentals of Heat Exchanger Design as the ideal text for both engineering professionals and advanced students alike.

Author Biography

Dusan P. Sekulic is a professor at the University of Kentucky College of Engineering. His work has been featured in over 200 publications, and he has authored or co-authored three previous books.

Ramesh K. Shah worked as a research professor at the Rochester Institute of Technology, as well as a senior staff research scientist at Delphi Harrison Thermal Systems and General Motors Corporation. He has authored and contributed to countless journal articles, books, conference papers, and more.

Table of Contents

Preface

Nomenclature   

1             Heat Exchangers: Semantics       

1.1         Heat Transfer in a Heat Exchanger

1.1.1      Heat Exchanger as a Part of a System

1.1.2      Heat Exchanger as a Component

1.2         Modelling a Heat Exchanger       

1.2.1      Temperature Distributions in Counterflow and Parallel flow         

1.2.2      True Meaning of the Heat Exchanger Effectiveness

1.2.3      Temperature Difference Distributions

1.2.4      Temperature Distributions in Crossflow Exchangers         

1.3         Irreversibility in Heat Exchangers

1.3.1      Entropy Generation Caused by Finite Temperature Differences

1.3.2      Entropy Generation Associated with Fluid Mixing

1.3.3      Entropy Generation Caused by Fluid Friction                      

1.4         Thermodynamic Irreversibility and Temperature Cross Phenomena          

1.4.1      Maximum Entropy Generation   

1.4.2      External Temperature Cross and Fluid Mixing Analogy

1.4.3      Thermodynamic Analysis for 1-2 TEMA J Shell and Tube Exchanger           

1.5         Heuristic Approach to an Assessment of Heat Exchanger Effectiveness    

1.6         Energy, Exergy and Cost Balances in the Analysis of Heat Exchangers

1.6.1      Temperature-Enthalpy Rate Change Diagram      

1.6.2      Analysis Based on an Energy Rate Balance

1.6.3      Analysis Based on Energy/Enthalpy and Cost Rate Balancing

1.6.4      Analysis Based on an Exergy Rate Balance

1.6.5      Thermodynamic Figure of Merit for Assessing Exchanger Performance

1.6.6      Accounting for the Cost of Exergy Losses in a Heat Exchanger      

1.7         Performance Evaluation Criteria Based on the Second Law of Thermodynamics                   

References         

2             Overview of Heat Exchanger Design Methodology: The Art           

2.1         Heat Exchanger Design Methodology      

2.1.1      Process and Design Specifications            

2.1.2      Thermal and Hydraulic Design    

2.1.3      Mechanical Design         

2.1.4      Manufacturing Considerations and Cost Estimates           

2.1.5      Trade-off Factors            

2.1.6      Optimum Design             

2.1.7      Other Considerations     

2.2         Interactions Among Design Considerations

2.3         Design Heat Exchangers for Manufacturing

2.3.1      Brazed Heat Exchangers

2.3.2      Additive Manufacturing Heat Exchangers (3-D Printing)                  

References                       

3             Thermal Design Theory for Recuperators             

3.1         Heat Flow and Thermal Resistance          

3.2         Heat Exchanger Design Variables/Parameters     

3.2.1      Assumptions for Heat Exchanger Analysis            

3.2.2      Problem Formulation    

3.2.3      Definitions of Dimensional Variables       

3.2.4      Thermal Size and UA      

3.3         The ε-NTU Method        

3.3.1      Heat Exchanger Effectiveness ε

3.3.2      Heat Capacity Rate Ratio C*       

3.3.3      Number of Transfer Units NTU  

3.4         Effectiveness – NTU Relationships           

3.4.1      Single-Pass Exchangers/Counterflow Exchangers

3.4.2      Exchangers with Other Flow Arrangements

3.4.3    Interpretation of -NTU Results

3.4.4   Stream Symmetry

3.5         The P-NTU Method        

3.5.1      Temperature Effectiveness P      

3.5.2      Number of Transfer Units, NTU

3.5.3      Heat Capacity Rate Ratio R          

3.5.4      General P–NTU Functional Relationship

3.6         P–NTU Relationships     

3.6.1      Parallel Counterflow Exchanger, Shell Fluid Mixed, 1–2

TEMA E Shell     

ass Exchangers

3.7         The Mean Temperature Difference Method        

3.7.1      Log-Mean Temperature Difference, LMTD           

3.7.2      Log-Mean Temperature Difference Correction Factor F  

3.8         F Factors for Various Flow Arrangements             

3.8.1      Counterflow Exchanger

3.8.2      Parallelflow Exchanger  

3.8.3      Other Basic Flow Arrangements               

3.8.4      Heat Exchanger Arrays and Multipassing              

3.9         Comparison of the ε-NTU, P–NTU, and MTD Methods     

3.9.1      Solutions to the Sizing and Rating Problems        

3.9.2      The ε-NTU Method Revisited      

3.9.3      The P-NTU Method Revisited      

3.9.4      The MTD Method Revisited         

3.10       The   and P1-P2 Methods            

3.10.1   The  Method     

3.10.2   The P1-P2 Method         

3.11       Solution Methods for Determining Exchanger Effectiveness          

3.11.1    Exact Analytical Methods             

3.11.2    Approximate Methods   

3.11.3    Numerical Methods        

3.11.4    Matrix Formalism            

3.11.5    Chain Rule Methodology              

3.11.6    Flow-Reversal Symmetry              

3.11.7    Rules for the Determination of Exchanger Effectiveness

with One Fluid Mixed     

3.12       Heat Exchanger Design Problems             

References         

4             Relaxation of Selected Design Assumptions. Extended SUrfaces

4.1         Longitudinal Wall Heat Conduction Effects

4.1.1      Exchangers with C* = 0 

4.1.2      Single-Pass Counterflow Exchanger         

4.1.3      Single-Pass Parallelflow Exchanger          

4.1.4      Single-Pass Unmixed–Unmixed Crossflow Exchanger       

4.1.5      Other Single-Pass Exchangers     

4.1.6      Multipass Exchangers    

4.2         Nonuniform Overall Heat Transfer Coefficients   

4.2.1      Temperature Effect        

4.2.2      Length Effect     

4.2.3      Combined Effect             

4.3         Additional Considerations for Extended Surface Exchangers         

4.3.1      Thin Fin Analysis              

4.3.2      Fin Efficiency     

4.3.3      Fin Effectiveness             

4.3.4      Extended Surface Efficiency        

4.4         Additional Considerations for Shell-and-Tube Exchangers              

4.4.1      Shell Fluid Bypassing and Leakage           

4.4.2      Unequal Heat Transfer Area in Individual Exchanger Passes          

4.4.3      Finite Number of Baffles

4.5         Flow Maldistribution

4.5.1      Geometry-induced Flow Maldistribution

4.5.2      Operating Condition-induced Flow Maldistribution

4.5.3      Mitigation of Flow Maldistribution

References                       

5             Thermal Design Theory for Regenerators

5.1         Heat Transfer Analysis

5.1.1 Assumptions for Regenerator Heat Transfer Analysis           

5.1.2 Definitions and Description of Important Parameters           

5.1.3 Governing Equations          

5.2         The ε-NTUo Method       

5.2.1      Dimensionless Groups   

5.2.2      Influence of Core Rotation and Valve Switching Frequency            

5.2.3      Convection Conductance Ratio (hA)*      

5.2.4      ε -NTUo Results for a Counterflow Regenerator  

5.2.5      ε -NTUo Results for a Parallelflow Regenerator   

5.3         The   Method     

5.3.1      Comparison of the ε -NTUo and  Methods            

5.3.2      Solutions for a Counterflow Regenerator              

5.3.3      Solution for a Parallelflow Regenerator  

5.4         Influence of Longitudinal Wall Heat Conduction

5.5         Influence of Transverse Wall Heat Conduction    

5.5.1      Simplified Theory           

5.6         Influence of Pressure and Carryover Leakages    

5.6.1      Modeling of Pressure and Carryover Leakages for a Rotary

Regenerator      

5.7         Influence of Matrix Material, Size, and Arrangement       

References        

6             Heat Exchanger Pressure Drop Analysis

6.1         Introduction

6.1.1      Importance of Pressure Drop     

6.1.2      Fluid Pumping Devices  

6.1.3      Major Contributions to the Heat Exchanger Pressure Drop           

6.1.4      Assumptions for Pressure Drop Analysis               

6.2         Extended Surface Heat Exchanger Pressure Drop              

6.2.1      Plate-Fin Heat Exchangers           

6.2.2      Tube-Fin Heat Exchangers           

6.3         Regenerator Pressure Drop        

6.4         Tubular Heat Exchanger Pressure Drop  

6.4.1      Tube Banks        

6.4.2      Shell-and-Tube Exchangers         

6.5         Plate Heat Exchanger Pressure Drop       

6.6         Pressure Drop Associated with Fluid Distribution Elements           

6.6.1      Pipe Losses        

6.6.2      Sudden Expansion and Contraction Losses           

6.6.3      Bend Losses      

6.7         Pressure Drop Presentation        

6.7.1      Nondimensional Presentation of Pressure Drop Data      

6.7.2      Dimensional Presentation of Pressure Drop Data              

6.8         Pressure Drop Dependence on Geometry and Fluid Properties    

References        

7             Surface Heat Transfer and Flow Friction Characteristics  

7.1         Basic Concepts  

7.1.1      Boundary Layers             

7.1.2      Types of Flows  

7.1.3      Free and Forced Convection       

7.1.4      Basic Definitions             

7.2         Dimensionless Groups   

7.2.1      Fluid Flow          

7.2.2      Heat Transfer     446

7.2.3      Dimensionless Surface Characteristics as a Function of the Reynolds Number       

7.3         Experimental Techniques for Determining Surface Characteristics             

7.3.1      Steady-State Kays and London Technique            

7.3.2      Wilson Plot Technique  

7.3.3      Transient Test Techniques          

7.3.4      Friction Factor Determination    

7.4         Analytical and Semiempirical Heat Transfer and Friction Factor Correlations for Simple Geometries       

7.4.1      Fully Developed Flows   

7.4.2      Hydrodynamically Developing Flows       

7.4.3      Thermally Developing Flows       

7.4.4      Simultaneously Developing Flows            

7.4.5      Extended Reynolds Analogy       

7.4.6      Limitations of j vs. Re Plot           

7.5         Experimental Heat Transfer and Friction Factor Correlations for Complex Geometries               

7.5.1      Tube Bundles    

7.5.2      Plate Heat Exchanger Surfaces   

7.5.3      Plate-Fin Extended Surfaces       

7.5.4      Tube-Fin Extended Surfaces       

7.5.5      Regenerator Surfaces    

7.6         Influence of Temperature-Dependent Fluid Properties   

7.6.1      Correction Schemes for Temperature-Dependent Fluid Properties            

             7.7    Influence of Superimposed Free Convection              

7.7.1      Horizontal Circular Tubes            

7.7.2      Vertical Circular Tubes  

7.8         Influence of Superimposed Radiation     

7.8.1      Liquids as Participating Media   

7.8.2      Gases as Participating Media      

References         

8                     Geometry of Heat Exchanger’s Surfaces       

8.1         Tubular Heat Exchangers             

8.1.1      Inline Arrangement         

8.1.2      Staggered Arrangement

8.2         Tube-Fin Heat Exchangers           

8.2.1      Circular Fins on Circular Tubes

8.2.2      Plain Flat Fins on Circular Tubes 

8.2.3      General Geometric Relationships for Tube-Fin Exchangers            

8.3         Plate-Fin Heat Exchangers           

8.3.1      Offset Strip Fin Exchanger           

8.3.2      Corrugated Louver Fin Exchanger             

8.3.3      General Geometric Relationships for Plate-Fin Surfaces  

8.4         Regenerators with Continuous Cylindrical Passages         

8.4.1      Triangular Passage Regenerator

8.5         Shell-and-Tube Exchangers with Segmental Baffles          

8.5.1      Tube Count        

8.5.2      Window and Crossflow Section Geometry            

8.5.3      Bypass and Leakage Flow Area

8.6         Gasketed Plate Heat Exchangers              

References                        

9             Heat Exchanger Design Procedures          

9.1         Fluid Mean Temperatures            

9.1.1      Heat Exchangers with    

9.1.2      Counterflow and Crossflow Heat Exchangers       

9.1.3      Multipass Heat Exchangers         

9.2         Plate-Fin Heat Exchangers           

9.2.1      Rating Problem 

9.2.2      Sizing Problem  

9.3         Tube-Fin Heat Exchangers           

9.3.1      Surface Geometries        

9.3.2      Heat Transfer Calculations          

9.3.3      Pressure Drop Calculations         

9.3.4      Core Mass Velocity Equation      

9.4         Plate Heat Exchangers   

9.4.1      Limiting Cases for the Design      

9.4.2      Uniqueness of a PHE for Rating and Sizing            

9.4.3      Rating a PHE     

9.4.4      Sizing a PHE       

9.5         Shell-and-Tube Heat Exchangers

9.5.1      Heat Transfer and Pressure Drop Calculations     

9.5.2      Rating Procedure            

9.5.3      Approximate Design Method     

9.5.4      More Rigorous Thermal Design Method

9.6         Note on Heat Exchanger Optimization                   

References                       

10          Selection of Heat Exchangers and Their Components       

10.1       Selection Criteria Based on Operating Parameters            

10.1.1   Operating Pressures and Temperatures

10.1.2   Cost      

10.1.3   Fouling and Cleanability               

10.1.4   Fluid Leakage and Contamination            

10.1.5   Fluids and Material Compatibility            

10.1.6   Fluid Type          

10.2       General Selection Guidelines for Major Exchanger Types               

10.2.1   Shell-and-Tube Exchangers         

10.2.2   Plate Heat Exchangers   

10.2.3   Extended-Surface Exchangers    

10.2.4   Regenerator Surfaces    

10.3       Some Quantitative Considerations

10.3.1   Screening Methods        

10.3.2   Performance Evaluation Criteria              

10.3.3   Evaluation Criteria Based on the Second Law of Thermodynamics             

10.3.4   Selection Criterion Based on Cost Evaluation       

References        

 

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.