Preface xv
Acknowledgments xix
About the Companion Website xxi
1 Introduction 1
1.1 Background 2
1.2 The Fractional Integral and Derivative 3
1.2.1 Grûnwald Definition 3
1.2.2 Riemann–Liouville Definition 4
1.2.3 The Nature of the Fractional-Order Operator 5
1.3 The Traditional Trigonometry 6
1.4 Previous Efforts 8
1.5 Expectations of a Generalized Trigonometry and Hyperboletry 8
2 The Fractional Exponential Function via the Fundamental Fractional Differential Equation 9
2.1 The Fundamental Fractional Differential Equation 9
2.2 The Generalized Impulse Response Function 10
2.3 Relationship of the F-function to the Mittag-Leffler Function 11
2.4 Properties of the F-Function 12
2.5 Behavior of the F-Function as the Parameter a Varies 13
2.6 Example 16
3 The Generalized Fractional Exponential Function: The R-Function and Other Functions for the Fractional Calculus 19
3.1 Introduction 19
3.2 Functions for the Fractional Calculus 19
3.2.1 Mittag-Leffler’s Function 20
3.2.2 Agarwal’s Function 20
3.2.3 Erdelyi’s Function 20
3.2.4 Oldham and Spanier’s, Hartley’s, and Matignon’s Function 20
3.2.5 Robotnov’s Function 21
3.2.6 Miller and Ross’s Function 21
3.2.7 Gorenflo and Mainardi’s, and Podlubny’s Function 21
3.3 The R-Function: A Generalized Function 22
3.4 Properties of the Rq,v(a, t)-Function 23
3.4.1 Differintegration of the R-Function 23
3.4.2 Relationship Between Rq,mq and Rq,0 25
3.4.3 Fractional-Order Impulse Function 27
3.5 Relationship of the R-Function to the Elementary Functions 27
3.5.1 Exponential Function 27
3.5.2 Sine Function 27
3.5.3 Cosine Function 28
3.5.4 Hyperbolic Sine and Cosine 28
3.6 R-Function Identities 29
3.6.1 Trigonometric-Based Identities 29
3.6.2 Further Identities 30
3.7 Relationship of the R-Function to the Fractional Calculus Functions 31
3.7.1 Mittag-Leffler’s Function 31
3.7.2 Agarwal’s Function 31
3.7.3 Erdelyi’s Function 31
3.7.4 Oldham and Spanier’s, and Hartley’s Function 31
3.7.5 Miller and Ross’s Function 32
3.7.6 Robotnov’s Function 32
3.7.7 Gorenflo and Mainardi’s, and Podlubny’s Function 32
3.8 Example: Cooling Manifold 32
3.9 Further Generalized Functions: The G-Function and the H-Function 34
3.9.1 The G-Function 34
3.9.2 The H-Function 36
3.10 Preliminaries to the Fractional Trigonometry Development 38
3.11 Eigen Character of the R-Function 38
3.12 Fractional Differintegral of the TimeScaled R-Function 39
3.13 R-Function Relationships 39
3.14 Roots of Complex Numbers 40
3.15 Indexed Forms of the R-Function 41
3.15.1 R-Function with Complex Argument 41
3.15.2 Indexed Forms of the R-Function 42
3.15.2.1 Complexity Form 42
3.15.2.2 Parity Form 43
3.16 Term-by-Term Operations 44
3.17 Discussion 46
4 R-Function Relationships 47
4.1 R-Function Basics 47
4.2 Relationships for Rm,0in Terms of R1,048
4.3 Relationships for R1∕m,0 in Terms of R1,0 50
4.4 Relationships for the Rational Form Rm∕p,0 in Terms of R1∕p,0 51
4.5 Relationships for R1∕p,0 in Terms of Rm∕p,0 53
4.6 Relating Rm∕p,0 to the Exponential Function R1,0 (b, t) = ebt 54
4.7 Inverse Relationships–Relationships for R1,0 in Terms of Rm,k 56
4.8 Inverse Relationships–Relationships for R1,0 in Terms of R1∕m,0 57
4.9 Inverse Relationships–Relationships for eat = R1,0(a, t) in Terms of Rm∕p,0 59
4.10 Discussion 61
5 The Fractional Hyperboletry 63
5.1 The Fractional R1-Hyperbolic Functions 63
5.2 R1-Hyperbolic Function Relationship 72
5.3 Fractional Calculus Operations on the R1-Hyperbolic Functions 72
5.4 Laplace Transforms of the R1-Hyperbolic Functions 73
5.5 Complexity-Based Hyperbolic Functions 73
5.6 Fractional Hyperbolic Differential Equations 74
5.7 Example 76
5.8 Discussions 77
6 The R1-Fractional Trigonometry 79
6.1 R1-Trigonometric Functions 79
6.1.1 R1-Trigonometric Properties 81
6.2 R1-Trigonometric Function Interrelationship 88
6.3 Relationships to R1-Hyperbolic Functions 89
6.4 Fractional Calculus Operations on the R1-Trigonometric Functions 89
6.5 Laplace Transforms of the R1-Trigonometric Functions 90
6.5.1 Laplace Transform of R1Cosq. v(a, k, t) 90
6.5.2 Laplace Transform of R1Sinq. v(a, k, t) 91
6.6 Complexity-Based R1-Trigonometric Functions 92
6.7 Fractional Differential Equations 94
7 The R2-Fractional Trigonometry 97
7.1 R2-Trigonometric Functions: Based on Real and Imaginary Parts 97
7.2 R2-Trigonometric Functions: Based on Parity 102
7.3 Laplace Transforms of the R2-Trigonometric Functions 111
7.3.1 R2Cosq,v(a, k, t) 111
7.3.2 R2Sinq,v(a, k, t) 112
7.3.3 L{R2Coflq,v(a, k, t)} 113
7.3.4 L{R2Flutq,v(a, k, t)} 113
7.3.5 L{R2Covibq,v(a, k, t)} 113
7.3.6 L{R2Vibq,v(a, k, t)} 113
7.4 R2-Trigonometric Function Relationships 113
7.4.1 R2Cosq,v(a, k, t) and R2Sinq,v(a, k, t) Relationships and Fractional Euler Equation 114
7.4.2 R2Rotq,v(a, t) and R2Corq,v(a, t) Relationships 116
7.4.3 R2Coflq,v(a, t) and R2Flutq,v(a, t) Relationships 116
7.4.4 R2Covibq,v(a, t) and R2Vibq,v(a, t) Relationships 118
7.5 Fractional Calculus Operations on the R2-Trigonometric Functions 119
7.5.1 R2Cosq,v(a, k, t) 119
7.5.2 R2Sinq,v(a, k, t) 121
7.5.3 R2Corq,v(a, t) 122
7.5.4 R2Rotq,v(a, t) 122
7.5.5 R2Coflutq,v(a, t) 122
7.5.6 R2Flutq,v(a, k, t) 123
7.5.7 R2Covibq,v (a, k, t) 123
7.5.8 R2Vibq,v(a, k, t) 124
7.5.9 Summary of Fractional Calculus Operations on the R2-Trigonometric Functions 124
7.6 Inferred Fractional Differential Equations 127
8 The R3-Trigonometric Functions 129
8.1 The R3-Trigonometric Functions: Based on Complexity 129
8.2 The R3-Trigonometric Functions: Based on Parity 134
8.3 Laplace Transforms of the R3-Trigonometric Functions 140
8.4 R3-Trigonometric Function Relationships 141
8.4.1 R3Cosq,v(a, t) and R3Sinq,v(a, t) Relationships and Fractional Euler Equation 142
8.4.2 R3Rotq,v(a, t) and R3Corq,v(a, t) Relationships 143
8.4.3 R3Coflq,v(a, t) and R3Flutq,v(a, t) Relationships 144
8.4.4 R3Covibq,v(a, t) and R3Vibq,v(a, t) Relationships 145
8.5 Fractional Calculus Operations on the R3-Trigonometric Functions 146
8.5.1 R3Cosq,v(a, k, t) 146
8.5.2 R3Sinq,v(a, k, t) 148
8.5.3 R3Corq,v(a, t) 149
8.5.4 R3Rotq,v(a, t) 150
8.5.5 R3Coflutq,v(a, k, t) 150
8.5.6 R3Flutq,v(a, k, t) 152
8.5.7 R3Covibq,v(a, k, t) 153
8.5.8 R3Vibq,v(a, k, t) 154
8.5.9 Summary of Fractional Calculus Operations on the R3-Trigonometric Functions 157
9 The Fractional Meta-Trigonometry 159
9.1 The Fractional Meta-Trigonometric Functions: Based on Complexity 160
9.1.1 Alternate Forms 161
9.1.2 Graphical Presentation–Complexity Functions 161
9.2 The Meta-Fractional Trigonometric Functions: Based on Parity 166
9.3 Commutative Properties of the Complexity and Parity Operations 179
9.3.1 Graphical Presentation–Parity Functions 181
9.4 Laplace Transforms of the Fractional Meta-Trigonometric Functions 188
9.5 R-Function Representation of the Fractional Meta-Trigonometric Functions 192
9.6 Fractional Calculus Operations on the Fractional Meta-Trigonometric Functions 195
9.6.1 Cosq,v(a, 𝛼, 𝛽, k, t) 195
9.6.2 Sinq,v(a, 𝛼, 𝛽, k, t) 197
9.6.3 Corq,v(a, 𝛼, 𝛽, t) 198
9.6.4 Rotq,v(a, 𝛼, 𝛽, t) 198
9.6.5 Coflutq,v(a, 𝛼, 𝛽, k, t) 199
9.6.6 Flutq,v(a, 𝛼, 𝛽, k, t) 200
9.6.7 Covibq,v(a, 𝛼, 𝛽, k, t) 202
9.6.8 Vibq,v(a, 𝛼, 𝛽, k, t) 203
9.6.9 Summary of Fractional Calculus Operations on the Meta-Trigonometric Functions 204
9.7 Special Topics in Fractional Differintegration 206
9.8 Meta-Trigonometric Function Relationships 206
9.8.1 Cosq,v(a, 𝛼, 𝛽, t) and Sinq,v(a, 𝛼, 𝛽, t) Relationships 206
9.8.2 Corq,v(a, 𝛼, 𝛽, t) and Rotq,v(a, 𝛼, 𝛽, t) Relationships 207
9.8.3 Covibq,v(a, 𝛼, 𝛽, t) and Vibq,v(a, 𝛼, 𝛽, t) Relationships 208
9.8.4 Coflq,v(a, 𝛼, 𝛽, t) and Flutq,v(a, 𝛼, 𝛽, t) Relationships 208
9.8.5 Coflq,v(a, 𝛼, 𝛽, t) and Vibq,v(a, 𝛼, 𝛽, t) Relationships 209
9.8.6 Cosq,v(a, 𝛼, 𝛽, t) and Sinq,v(a, 𝛼, 𝛽, t) Relationships to Other Functions 211
9.8.7 Meta-Identities Based on the Integer-order Trigonometric Identities 211
9.8.7.1 The cos(−x)=cos(x)-Based Identity for Cosq,v(a, 𝛼, 𝛽, t) 211
9.8.7.2 The sin(−x)=−sin(x)-Based Identity for Sinq,v(a, 𝛼, 𝛽, t) 212
9.8.7.3 The Cosq,v(a, 𝛼, 𝛽, t)⇔Sinq,v(a, 𝛼, 𝛽, t) Identity 212
9.8.7.4 The sin(x)=sin(x±m𝜋/2)-Based Identity for Sinq,v(a, 𝛼, 𝛽, t) 213
9.9 Fractional Poles: Structure of the Laplace Transforms 214
9.10 Comments and Issues Relative to the Meta-Trigonometric Functions 214
9.11 Backward Compatibility to Earlier Fractional Trigonometries 215
9.12 Discussion 215
10 The Ratio and Reciprocal Functions 217
10.1 Fractional Complexity Functions 217
10.2 The Parity Reciprocal Functions 219
10.3 The Parity Ratio Functions 221
10.4 R-Function Representation of the Fractional Ratio and Reciprocal Functions 225
10.5 Relationships 226
10.6 Discussion 227
11 Further Generalized Fractional Trigonometries 229
11.1 The G-Function-Based Trigonometry 229
11.2 Laplace Transforms for the G-Trigonometric Functions 230
11.3 The H-Function-Based Trigonometry 234
11.4 Laplace Transforms for the H-Trigonometric Functions 235
Introduction to Applications 241
12 The Solution of Linear Fractional Differential Equations Based on the Fractional Trigonometry 243
12.1 Fractional Differential Equations 243
12.2 Fundamental Fractional Differential Equations of the First Kind 245
12.3 Fundamental Fractional Differential Equations of the Second Kind 246
12.4 Preliminaries–Laplace Transforms 246
12.4.1 Fractional Cosine Function 246
12.4.2 Fractional Sine Function 248
12.4.3 Higher-Order Numerator Dynamics 248
12.4.3.1 Fractional Cosine Function 248
12.4.3.2 Fractional Sine Function 248
12.4.4 Parity Functions–The Flutter Function 249
12.4.5 Additional Transform Pairs 250
12.5 Fractional Differential Equations of Higher Order: Unrepeated Roots 250
12.6 Fractional Differential Equations of Higher Order: Containing Repeated Roots 252
12.6.1 Repeated Real Fractional Roots 252
12.6.2 Repeated Complex Fractional Roots 253
12.7 Fractional Differential Equations Containing Repeated Roots 253
12.8 Fractional Differential Equations of Non-Commensurate Order 254
12.9 Indexed Fractional Differential Equations: Multiple Solutions 255
12.10 Discussion 256
13 Fractional Trigonometric Systems 259
13.1 The R-Function as a Linear System 259
13.2 R-System Time Responses 260
13.3 R-Function-Based Frequency Responses 260
13.4 Meta-Trigonometric Function-Based Frequency Responses 261
13.5 Fractional Meta-Trigonometry 264
13.6 Elementary Fractional Transfer Functions 266
13.7 Stability Theorem 266
13.8 Stability of Elementary Fractional Transfer Functions 267
13.9 Insights into the Behavior of the Fractional Meta-Trigonometric Functions 268
13.9.1 Complexity Function Stability 268
13.9.2 Parity Function Stability 269
13.10 Discussion 270
14 Numerical Issues and Approximations in the Fractional Trigonometry 271
14.1 R-Function Convergence 271
14.2 The Meta-Trigonometric Function Convergence 272
14.3 Uniform Convergence 273
14.4 Numerical Issues in the Fractional Trigonometry 274
14.5 The R2Cos- and R2Sin-Function Asymptotic Behavior 275
14.6 R-Function Approximations 276
14.7 The Near-Order Effect 279
14.8 High-Precision Software 281
15 The Fractional Spiral Functions: Further Characterization of the Fractional Trigonometry 283
15.1 The Fractional Spiral Functions 283
15.2 Analysis of Spirals 288
15.2.1 Descriptions of Spirals 288
15.2.1.1 Polar Description 289
15.2.1.2 Parametric Description 290
15.2.1.3 Definitions 293
15.2.1.4 Alternate Definitions 294
15.2.1.5 Examples 294
15.2.2 Spiral Length and Growth/Decay Rates 294
15.2.2.1 Spiral Length 294
15.2.2.2 Spiral Growth Rates for ccw Spirals 295
15.2.2.3 Component Growth Rates 296
15.2.3 Scaling of Spirals 296
15.2.3.1 Uniform Rectangular Scaling 297
15.2.3.2 Nonuniform Rectangular Scaling 297
15.2.3.3 Polar Scaling 298
15.2.3.4 Radial Scaling 298
15.2.3.5 Angular Scaling 298
15.2.4 Spiral Velocities 299
15.2.5 Referenced Spirals: Retardation 301
15.3 Relation to the Classical Spirals 303
15.3.1 Classical Spirals 303
15.4 Discussion 307
16 Fractional Oscillators 309
16.1 The Space of Linear Fractional Oscillators 309
16.1.1 Complexity Function-Based Oscillators 310
16.1.2 Parity Function-Based Oscillators 311
16.1.3 Intrinsic Oscillator Damping 312
16.2 Coupled Fractional Oscillators 314
17 Shell Morphology and Growth 317
17.1 Nautilus pompilius 317
17.1.1 Introduction 317
17.1.2 Nautilus Morphology 318
17.1.2.1 Fractional Differential Equations 323
17.1.3 Spiral Length 325
17.1.4 Morphology of the Siphuncle Spiral 325
17.1.5 Fractional Growth Rate 325
17.1.6 Nautilus Study Summary 328
17.2 Shell 5 329
17.3 Shell 6 330
17.4 Shell 7 332
17.5 Shell 8 332
17.6 Shell 9 336
17.7 Shell 10 336
17.8 Ammonite 339
17.9 Discussion 340
18 Mathematical Classification of the Spiral and Ring Galaxy Morphologies 341
18.1 Introduction 341
18.2 Background–Fractional Spirals for Galactic Classification 342
18.3 Classification Process 347
18.3.1 Symmetry Assumption 347
18.3.2 Galaxy Image to Spiral or Spiral to Galaxy Image 347
18.3.3 Inclination 347
18.3.4 Data Presentation 348
18.4 Mathematical Classification of Selected Galaxies 350
18.4.1 NGC 4314 SB(rs)a 350
18.4.2 NGC 1365 SBb/SBc/SB(s)b/SBb(s) 350
18.4.3 M95 SB(r)b/SBb(r)/SBa/SBb 350
18.4.4 NGC 2997 Sc/SAB(rs)c/Sc(s) 353
18.4.5 NGC 4622 (R′)SA(r)a pec/Sb 353
18.4.6 M 66 or NGC 3627 SAB(s)b/Sb(s)/Sb 353
18.4.7 NGC 4535 SAB(s)c/SB(s)c/Sc/SBc 355
18.4.8 NGC 1300 SBc/SBb(s)/SB(rs)bc 355
18.4.9 Hoag’s Object 358
18.4.10 M 51 Sa+Sc 358
18.4.11 AM 0644-741 Sc/Strongly peculiar/ 359
18.4.12 ESO 269-G57 (R′)SAB(r)ab/Sa(r) 360
18.4.13 NGC 1313 SBc/SB(s)d/SB(s)d 362
18.4.14 Carbon Star 3068 362
18.5 Analysis 362
18.5.1 Fractional Differential Equations 366
18.5.2 Alternate Classification Basis 366
18.6 Discussion 367
18.6.1 Benefits 368
18.7 Appendix: Carbon Star 370
18.7.1 Carbon Star AFGL 3068 (IRAS 23166+1655) 370
19 Hurricanes, Tornados, and Whirlpools 371
19.1 Hurricane Cloud Patterns 371
19.1.1 Hurricane Fran 371
19.1.2 Hurricane Isabel 371
19.2 Tornado Classification 373
19.2.1 The k Index 374
19.2.2 Tornado Morphology Animation 374
19.2.3 Tornado Morphology Classification 375
19.3 Low-Pressure Cloud Pattern 375
19.4 Whirlpool 375
19.5 Order in Physical Systems 379
20 A Look Forward 381
20.1 Properties of the R-Function 382
20.2 Inverse Functions 382
20.3 The Generalized Fractional Trigonometries 384
20.4 Extensions to Negative Time, Complementary Trigonometries, and Complex Arguments 384
20.5 Applications: Fractional Field Equations 385
20.6 Fractional Spiral and Nonspiral Properties 387
20.7 Numerical Improvements for Evaluation to Larger Values of atq 387
20.8 Epilog 388
A Related Works 389
A.1 Introduction 389
A.2 Miller and Ross 389
A.3 West, Bologna, and Grigolini 390
A.4 Mittag-Leffler-Based Fractional Trigonometric Functions 390
A.5 Relationship to Current Work 391
B Computer Code 393
B.1 Introduction 393
B.2 MatlabⓇ R-Function 393
B.3 MatlabⓇ R-Function Evaluation Program 394
B.4 MatlabⓇ Meta-Cosine Function 395
B.5 MatlabⓇ Cosine Evaluation Program 395
B.6 MapleⓇ 10 Program Calculates Phase Plane Plot for Fractional Sine versus Cosine 396
C Tornado Simulation 399
D Special Topics in Fractional Differintegration 401
D.1 Introduction 401
D.2 Fractional Integration of the Segmented tp-Function 401
D.3 Fractional Differentiation of the Segmented tp-Function 404
D.4 Fractional Integration of Segmented Fractional Trigonometric Functions 406
D.5 Fractional Differentiation of Segmented Fractional Trigonometric Functions 408
E Alternate Forms 413
E.1 Introduction 413
E.2 Reduced Variable Summation Forms 414
E.3 Natural Quency Simplification 415
References 417
Index 425