Preface |
|
xv | |
|
|
xvii | |
|
|
1 | (54) |
|
|
3 | (4) |
|
|
7 | (10) |
|
Optimal price policy of a monopolist |
|
|
7 | (1) |
|
The Black--Scholes option pricing model |
|
|
8 | (2) |
|
|
10 | (2) |
|
Multi-asset options with stochastic correlation |
|
|
12 | (2) |
|
The steady-state distribution of the Vasicek interest rate process |
|
|
14 | (2) |
|
|
16 | (1) |
|
The Conventional Approach: Finite Differences |
|
|
17 | (38) |
|
General considerations for numerical computations |
|
|
17 | (5) |
|
|
17 | (1) |
|
Turning unbounded domains into bounded domains |
|
|
18 | (4) |
|
Ordinary initial value problems |
|
|
22 | (24) |
|
|
22 | (1) |
|
|
23 | (5) |
|
|
28 | (2) |
|
|
30 | (3) |
|
The backward Euler method |
|
|
33 | (2) |
|
The Crank--Nicolson method |
|
|
35 | (1) |
|
Predictor--corrector methods |
|
|
36 | (2) |
|
|
38 | (1) |
|
Methods for systems of equations |
|
|
39 | (7) |
|
Ordinary two-point boundary value problems |
|
|
46 | (3) |
|
|
46 | (1) |
|
Finite difference methods |
|
|
46 | (3) |
|
|
49 | (1) |
|
Initial boundary value problems |
|
|
49 | (4) |
|
|
49 | (2) |
|
|
51 | (1) |
|
The Crank--Nicolson method |
|
|
52 | (1) |
|
Integrating early exercise |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (198) |
|
|
57 | (52) |
|
Basic features of finite element methods |
|
|
57 | (1) |
|
The method of weighted residuals -- one-element solutions |
|
|
57 | (15) |
|
The Ritz variational method |
|
|
72 | (2) |
|
The method of weighted residuals -- a more general view |
|
|
74 | (1) |
|
|
75 | (24) |
|
The Galerkin method with linear elements |
|
|
76 | (13) |
|
The Galerkin method with quadratic trial functions |
|
|
89 | (4) |
|
The collocation method with cubic Hermite trial functions |
|
|
93 | (6) |
|
|
99 | (7) |
|
The Evans model of a monopolist |
|
|
99 | (1) |
|
First exit time of a geometric Brownian motion |
|
|
99 | (2) |
|
The steady-state distribution of the Ornstein--Uhlenbeck process |
|
|
101 | (1) |
|
Convection-dominated problems |
|
|
102 | (4) |
|
|
106 | (1) |
|
|
107 | (2) |
|
|
109 | (52) |
|
Derivation of element equations |
|
|
109 | (6) |
|
|
109 | (5) |
|
|
114 | (1) |
|
|
115 | (46) |
|
|
115 | (8) |
|
|
123 | (9) |
|
|
132 | (10) |
|
|
142 | (8) |
|
Some practicalities: Dividends and settlement |
|
|
150 | (11) |
|
|
161 | (34) |
|
Introduction and overview |
|
|
161 | (1) |
|
|
162 | (3) |
|
|
165 | (22) |
|
The Galerkin method with linear elements (triangles) |
|
|
165 | (22) |
|
The Galerkin method with linear elements (rectangular elements) |
|
|
187 | (1) |
|
|
187 | (7) |
|
Brownian motion leaving a disk |
|
|
187 | (1) |
|
|
188 | (3) |
|
First exit time in a two-asset pricing problem |
|
|
191 | (3) |
|
|
194 | (1) |
|
|
195 | (12) |
|
Derivation of element equations |
|
|
195 | (2) |
|
|
197 | (10) |
|
|
197 | (6) |
|
Modeling volatility as a risk factor |
|
|
203 | (4) |
|
|
207 | (8) |
|
Derivation of element equations: The collocation method |
|
|
207 | (2) |
|
|
209 | (4) |
|
First exit time of purely Brownian motion |
|
|
209 | (2) |
|
First exit time of geometric Brownian motion |
|
|
211 | (2) |
|
|
213 | (2) |
|
|
215 | (6) |
|
Derivation of element equations: The collocation method |
|
|
215 | (1) |
|
|
216 | (5) |
|
Pricing and hedging a basket option |
|
|
216 | (2) |
|
Basket options with barriers |
|
|
218 | (3) |
|
|
221 | (32) |
|
|
221 | (2) |
|
|
223 | (29) |
|
|
223 | (1) |
|
|
223 | (4) |
|
|
227 | (13) |
|
Uncertain volatility: Best and worst cases |
|
|
240 | (8) |
|
Worst-case pricing of rainbow options |
|
|
248 | (4) |
|
|
252 | (1) |
|
|
253 | (4) |
|
Future Directions of Research |
|
|
255 | (2) |
|
|
257 | (86) |
|
A Some Useful Results from Analysis |
|
|
259 | (46) |
|
A.1 Important theorems from calculus |
|
|
259 | (1) |
|
A.1.1 Various concepts of continuity |
|
|
259 | (1) |
|
|
260 | (2) |
|
A.1.3 Mean value theorems |
|
|
262 | (1) |
|
|
263 | (1) |
|
A.2 Basic numerical tools |
|
|
264 | (1) |
|
|
264 | (4) |
|
A.2.2 Solving nonlinear equations |
|
|
268 | (2) |
|
A.3 Differential equations |
|
|
270 | (1) |
|
A.3.1 Definition and classification |
|
|
270 | (2) |
|
A.3.2 Ordinary initial value problems |
|
|
272 | (7) |
|
A.3.3 Ordinary boundary value problems |
|
|
279 | (6) |
|
A.3.4 Partial differential equations of second order |
|
|
285 | (2) |
|
|
287 | (8) |
|
|
295 | (1) |
|
|
296 | (1) |
|
A.3.8 Hyperbolic conservation laws |
|
|
297 | (2) |
|
A.4 Calculus of variations |
|
|
299 | (6) |
|
B Some Useful Results from Stochastics |
|
|
305 | (24) |
|
B.1 Some important distributions |
|
|
305 | (1) |
|
B.1.1 The univariate normal distribution |
|
|
305 | (1) |
|
B.1.2 The bivariate normal distribution |
|
|
305 | (2) |
|
B.1.3 The multivariate normal distribution |
|
|
307 | (1) |
|
B.1.4 The lognormal distribution |
|
|
307 | (1) |
|
|
307 | (2) |
|
B.1.6 The central Χ2 distribution |
|
|
309 | (1) |
|
B.1.7 The noncentral Χ2 distribution |
|
|
310 | (1) |
|
B.2 Some important processes |
|
|
310 | (1) |
|
|
310 | (2) |
|
|
312 | (1) |
|
B.2.3 Brownian motion with drift |
|
|
313 | (1) |
|
B.2.4 Geometric Brownian motion |
|
|
313 | (1) |
|
|
314 | (1) |
|
B.2.6 Ornstein--Uhlenbeck process |
|
|
314 | (1) |
|
B.2.7 A process for commodities |
|
|
314 | (1) |
|
|
314 | (1) |
|
B.3.1 The transition probability density Function |
|
|
314 | (1) |
|
B.3.2 The backward Kolmogorov equation |
|
|
315 | (1) |
|
B.3.3 The forward Kolmogorov equation |
|
|
316 | (5) |
|
B.3.4 Steady-state distributions |
|
|
321 | (1) |
|
|
322 | (3) |
|
|
325 | (1) |
|
|
326 | (3) |
|
C Some Useful Results from Linear Algebra |
|
|
329 | (12) |
|
|
329 | (2) |
|
|
331 | (2) |
|
|
333 | (1) |
|
C.4 Solving linear algebraic systems |
|
|
333 | (6) |
|
|
339 | (2) |
|
D A Quick Introduction to PDE2D |
|
|
341 | (2) |
References |
|
343 | (8) |
Index |
|
351 | |