
Electromagnetic Radiation
by Freeman, Richard R.; King, James A.; Lafyatis, Gregory P.-
This Item Qualifies for Free Shipping!*
*Excludes marketplace orders.
Buy New
Rent Textbook
Rent Digital
Used Textbook
We're Sorry
Sold Out
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
The book is composed of four parts: Part I is a review of basic E&M (electricity and magnetism), and presents a concise review of topics covered in the subject. Part II addresses the origins of radiation in terms of time variations of charge and current densities within the source, and presents Jefimenko's field equations as derived from retarded potentials. Part III introduces special relativity and its deep connection to Maxwell's equations, together with an introduction to relativistic field theory, as well as the relativistic treatment of radiation from an arbitrarily accelerating charge. A highlight of this part is a chapter on the still partially unresolved problem of radiation reaction on an accelerating charge. Part IV treats the practical problems of electromagnetic radiation interacting with matter, with chapters on energy transport, scattering, diffraction and finally an illuminating, application-oriented treatment of fields in confined environments.
Author Biography
Richard R. Freeman, Distinguished Professor of Mathematical and Physical Sciences, Emeritus, The Ohio State University, USA; and Edward Teller Professor of Applied Sciences, Emeritus, University of California, Davis, USA, The Ohio State University,James A. King, Senior Scientist, National Security Technologies,Gregory P. Lafyatis, Associate Professor of Physics, The Ohio State University
Richard Freeman received his undergraduate degree in physics from the University of Washington and his Ph.D. from Harvard studying molecular interactions under Norman Ramsey in 1973. He did post-doctoral work at MIT investigating Rydberg atoms under Daniel Kleppner. He spent 20 years at Bell Laboratories developing experimental tools to understand the effects of intense light on atoms and molecules. In 1996, he moved to the University of California where he continued his interests in intense light interactions with matter. In 2003, he was appointed Dean of Mathematical and Physical Sciences at The Ohio State University where he continued his studies of matter under extreme conditions.
James A. King received a Bachelor's degree in Physics and a PhD in Applied Science from University of Nevada, Las Vegas and University of California, Davis, respectively. He worked at LLNL as a graduate student and at UCSD and OSU and a postdoctoral researcher. Presently he is employed by NSTec.
Gregory Lafyatis received his undergraduate degree in electrical engineering from MIT and Ph. D in physics from Harvard where he experimentally studied atomic and molecular processes of astrophysical interest. His post-doctoral work included helping to develop a single ion trap for use in ultra-high precision mass spectroscopy and early work in trapping laser cooled neutral atoms. In his faculty position at Ohio State University, he has made contributions in a variety of atomic, molecular, and optical physics including cold atom experiments, condensed matter motivated atomic beam experiments, biologically motivated optical tweezer experiments, and single photon detectors for quantum information applications.
Table of Contents
Part I: Introductory Foundations
1. Essentials of Electricity and Magnetism
2. The Potentials
Part II: Origins of Radiation Fields
3. General Relations between Fields and Sources
4. Fields in terms of the Multiple Moments of the Source
Part III: Electromagnetism and Special Relativity
5. Introduction to Special Relativity
6. Radiation from Charges Moving at Relativistic Velocities
7. Relativistic Electrodynamics
8. Field Reactions to Moving Charges
Part IV: Radiation in Materials
9. Properties of Electromagnetic Radiation in Materials
10. Models of Electromagnetic Response of Materials
11. Scattering of Electromagnetic Radiation in Materials
12. Diffraction and the Propagation of Light
13. Radiation Fields in Constrained Environments
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.