Preface |
|
xiii | |
I Cryptography |
|
1 | (158) |
|
1 History and Claude E. Shannon |
|
|
3 | (14) |
|
1.1 Historical Background |
|
|
3 | (5) |
|
1.2 Brief Biography of Claude E. Shannon |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.4 Personal Professional |
|
|
10 | (1) |
|
|
11 | (3) |
|
|
14 | (3) |
|
2 Classical Ciphers and Their Cryptanalysis |
|
|
17 | (22) |
|
|
17 | (1) |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.5 The Enigma Machine and Its Mathematics |
|
|
22 | (4) |
|
|
26 | (1) |
|
2.7 Breaking the Vigenere Cipher, Babbage-Kasiski |
|
|
26 | (5) |
|
2.8 Modern Enciphering Systems |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (6) |
|
3 RSA, Key Searches, SSL, and Encrypting Email |
|
|
39 | (30) |
|
|
41 | (1) |
|
3.2 The Basic Idea of Cryptography |
|
|
41 | (4) |
|
3.3 Public Key Cryptography and RSA on a Calculator |
|
|
45 | (3) |
|
3.4 The General RSA Algorithm |
|
|
48 | (3) |
|
3.5 Public Key Versus Symmetric Key |
|
|
51 | (3) |
|
3.6 Attacks, Security of DES, Key-spaces |
|
|
54 | (2) |
|
3.7 Summary of Encryption |
|
|
56 | (1) |
|
3.8 SSL (Secure Socket Layer) |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (3) |
|
|
64 | (5) |
|
4 The Fundamentals of Modern Cryptography |
|
|
69 | (90) |
|
|
69 | (2) |
|
4.2 Block Ciphers, Shannon's Confusion and Diffusion |
|
|
71 | (2) |
|
4.3 Perfect Secrecy, Stream Ciphers, One-Time Pad |
|
|
73 | (3) |
|
|
76 | (3) |
|
4.5 Message Integrity Using Symmetric Cryptography |
|
|
79 | (1) |
|
4.6 General Public Key Cryptosystems |
|
|
80 | (2) |
|
4.7 Electronic Signatures |
|
|
82 | (2) |
|
4.8 The Diffie-Hellman Key Exchange |
|
|
84 | (3) |
|
|
87 | (2) |
|
4.10 Key Management and Kerberos |
|
|
89 | (2) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (3) |
|
5 DES, AES and Operating Modes |
|
|
95 | (18) |
|
5.1 The Data Encryption Standard Code |
|
|
95 | (6) |
|
|
101 | (1) |
|
|
102 | (1) |
|
5.4 The Advanced Encryption Standard Code |
|
|
102 | (7) |
|
|
109 | (1) |
|
|
110 | (3) |
|
6 Elliptic Curve Cryptography (ECC) |
|
|
113 | (18) |
|
6.1 Abelian Integrals, Fields, Groups |
|
|
113 | (2) |
|
|
115 | (2) |
|
|
117 | (1) |
|
6.4 The Hasse Theorem, and an Example |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.6 The Group Law on Elliptic Curves |
|
|
119 | (3) |
|
6.7 Key Exchange with Elliptic Curves |
|
|
122 | (1) |
|
6.8 Elliptic Curves mod n |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
6.11 More Geometry of Cubic Curves |
|
|
123 | (1) |
|
6.12 Cubic Curves and Arcs |
|
|
124 | (1) |
|
6.13 Homogeneous Coordinates |
|
|
124 | (1) |
|
6.14 Fermat's Last Theorem, Elliptic Curves, Gerhard Frey |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (5) |
|
7 Attacks in Cryptography |
|
|
131 | (14) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
7.4 Man-In-The-Middle Attacks |
|
|
134 | (1) |
|
7.5 Known Plain Text Attacks |
|
|
135 | (1) |
|
7.6 Known Cipher Text Attacks |
|
|
135 | (1) |
|
7.7 Chosen Plain Text Attacks |
|
|
136 | (1) |
|
7.8 Chosen Cipher Text Attacks, Digital Signatures |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
7.11 Birthday Attack on Digital Signatures |
|
|
138 | (1) |
|
7.12 Birthday Attack on the Discrete Log Problem |
|
|
139 | (1) |
|
|
139 | (1) |
|
7.14 Attacks on RSA using Low-Exponents |
|
|
140 | (1) |
|
|
141 | (1) |
|
7.16 Dfferential Cryptanalysis |
|
|
142 | (1) |
|
7.17 Implementation Errors and Unforeseen States |
|
|
143 | (2) |
|
|
145 | (16) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (4) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (2) |
|
8.9 Communication Protocols |
|
|
156 | (3) |
II Information Theory |
|
159 | (158) |
|
9 Information Theory and Its Applications |
|
|
161 | (14) |
|
9.1 Axioms, Physics, Computation |
|
|
161 | (1) |
|
|
162 | (2) |
|
9.3 Information Gained, Cryptography |
|
|
164 | (2) |
|
9.4 Practical Applications of Information Theory |
|
|
166 | (1) |
|
9.5 Information Theory and Physics |
|
|
167 | (1) |
|
9.6 Axiomatics of Information Theory |
|
|
168 | (1) |
|
9.7 Number Bases, Erdos, and the Hand of God |
|
|
169 | (2) |
|
9.8 Weighing Problems and Your MBA |
|
|
171 | (2) |
|
9.9 Shannon Bits, the Big Picture |
|
|
173 | (2) |
|
10 Random Variables and Entropy |
|
|
175 | (28) |
|
|
175 | (3) |
|
10.2 Mathematics of Entropy |
|
|
178 | (1) |
|
|
179 | (1) |
|
10.4 Conditional Probability |
|
|
180 | (4) |
|
|
184 | (1) |
|
|
185 | (1) |
|
10.7 Law of Large Numbers |
|
|
186 | (1) |
|
10.8 Joint and Conditional Entropy |
|
|
187 | (5) |
|
10.9 Applications of Entropy |
|
|
192 | (1) |
|
10.10 Calculation of Mutual Information |
|
|
193 | (1) |
|
10.11 Mutual Information and Channels |
|
|
194 | (1) |
|
10.12 The Entropy of X + Y |
|
|
195 | (1) |
|
10.13 Subadditivity of the Function -x log x |
|
|
196 | (1) |
|
10.14 Entropy and Cryptography |
|
|
196 | (1) |
|
|
196 | (2) |
|
|
198 | (5) |
|
11 Source Coding, Data Compression, Redundancy |
|
|
203 | (22) |
|
11.1 Introduction, Source Extensions |
|
|
204 | (1) |
|
11.2 Encodings, Kraft, McMillan |
|
|
205 | (6) |
|
11.3 Block Coding, The Oracle, Yes-No Questions |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (5) |
|
11.6 Optimality of Huffman Coding |
|
|
218 | (1) |
|
11.7 Data Compression, Lempel-Ziv Coding, Redundancy |
|
|
219 | (3) |
|
|
222 | (1) |
|
|
223 | (2) |
|
12 Channels, Capacity, the Fundamental Theorem |
|
|
225 | (28) |
|
|
226 | (1) |
|
12.2 More Specific Channels |
|
|
227 | (1) |
|
12.3 New Channels from Old, Cascades |
|
|
228 | (3) |
|
12.4 Input Probability, Channel Capacity |
|
|
231 | (3) |
|
12.5 Capacity for General Binary Channels, Entropy |
|
|
234 | (2) |
|
|
236 | (1) |
|
12.7 Improving Reliability of a Binary Symmetric Channel |
|
|
237 | (1) |
|
12.8 Error Correction, Error Reduction, Good Redundancy |
|
|
238 | (3) |
|
12.9 The Fundamental Theorem of Information Theory |
|
|
241 | (7) |
|
12.10 Summary, the Big Picture |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (4) |
|
13 Signals, Sampling, SNR, Coding Gain |
|
|
253 | (8) |
|
13.1 Continuous Signals, Shannon's Sampling Theorem |
|
|
253 | (3) |
|
13.2 The Band-Limited Capacity Theorem, an Example |
|
|
256 | (3) |
|
|
259 | (2) |
|
14 Ergodic and Markov Sources, Language Entropy |
|
|
261 | (16) |
|
14.1 General and Stationary Sources |
|
|
261 | (3) |
|
|
264 | (1) |
|
14.3 Markov Chains and Markov Sources |
|
|
265 | (4) |
|
14.4 Irreducible Markov Sources, Adjoint Source |
|
|
269 | (1) |
|
14.5 Cascades and the Data Processing Theorem |
|
|
270 | (1) |
|
14.6 The Redundancy of Languages |
|
|
271 | (3) |
|
|
274 | (1) |
|
|
275 | (2) |
|
15 Perfect Secrecy: the New Paradigm |
|
|
277 | (12) |
|
15.1 Symmetric Key Cryptosystems |
|
|
277 | (2) |
|
15.2 Perfect Secrecy and Equiprobable Keys |
|
|
279 | (1) |
|
15.3 Perfect Secrecy and Latin Squares |
|
|
280 | (2) |
|
15.4 The Abstract Approach to Perfect Secrecy |
|
|
282 | (1) |
|
15.5 Cryptography, Information Theory, Shannon |
|
|
283 | (1) |
|
15.6 Unique Message from Ciphertext, Unicity |
|
|
283 | (1) |
|
|
284 | (2) |
|
|
286 | (3) |
|
16 Shift Registers (LFSR) and Stream Ciphers |
|
|
289 | (18) |
|
16.1 Vernam Cipher, Psuedo-Random Key |
|
|
290 | (1) |
|
16.2 Construction of Feedback Shift Registers |
|
|
290 | (3) |
|
|
293 | (3) |
|
16.4 Maximal Periods, Pseudo-Random Sequences |
|
|
296 | (1) |
|
16.5 Determining the Output from 2m Bits |
|
|
297 | (3) |
|
16.6 The Tap Polynomial and the Period |
|
|
300 | (1) |
|
16.7 Berlekamp-Massey Algorithm |
|
|
301 | (3) |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
307 | (10) |
|
17.1 Biology and Information Theory |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
17.4 DNA as an Information Channel |
|
|
309 | (1) |
|
17.5 The Double Helix, Replication |
|
|
310 | (1) |
|
17.6 Protein Synthesis and the Genetic code |
|
|
310 | (2) |
|
|
312 | (1) |
|
17.8 Entropy and Compression in Genetics |
|
|
313 | (1) |
|
17.9 Channel Capacity of the Genetic Code |
|
|
314 | (3) |
III Error-Correction |
|
317 | (128) |
|
18 Error-Correction, Haddamard, Block Designs |
|
|
319 | (16) |
|
18.1 General Ideas of Error Correction |
|
|
319 | (1) |
|
18.2 Error Detection, Error Correction |
|
|
320 | (1) |
|
18.3 A Formula for Correction and Detection |
|
|
321 | (1) |
|
|
322 | (3) |
|
18.5 Mariner, Hadamard and Reed-Muller |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
326 | (2) |
|
18.8 A Problem of Lander, the Bruen-Ott Theorem |
|
|
328 | (1) |
|
18.9 The Main Coding Theory Problem, Bounds |
|
|
328 | (5) |
|
|
333 | (1) |
|
|
333 | (2) |
|
19 Finite Fields, Linear Algebra, and Number Theory |
|
|
335 | (24) |
|
|
335 | (4) |
|
19.2 A Little Linear Algebra |
|
|
339 | (2) |
|
|
341 | (1) |
|
19.4 Primitive Roots for Primes and Diffie-Hellman |
|
|
342 | (3) |
|
19.5 The Extended Euclidean Algorithm |
|
|
345 | (1) |
|
19.6 Proof that the RSA Algorithm Works |
|
|
346 | (1) |
|
19.7 Constructing Finite Fields |
|
|
346 | (4) |
|
19.8 Pollard's p - 1 Factoring Algorithm |
|
|
350 | (1) |
|
19.9 Turing Machines, Complexity, P and NP |
|
|
351 | (3) |
|
|
354 | (1) |
|
|
355 | (4) |
|
20 Introduction to Linear Codes |
|
|
359 | (20) |
|
20.1 Repetition Codes and Parity Checks |
|
|
359 | (2) |
|
20.2 Details of Linear Codes |
|
|
361 | (3) |
|
20.3 Parity Checks, the Syndrome, Weights |
|
|
364 | (2) |
|
20.4 Hamming Codes, an Inequality |
|
|
366 | (1) |
|
20.5 Perfect Codes, Errors and the BSC |
|
|
367 | (1) |
|
20.6 Generalizations of Binary Hamming Codes |
|
|
368 | (1) |
|
20.7 The Football Pools Problem, Extended Hamming Codes |
|
|
369 | (1) |
|
|
370 | (1) |
|
20.9 McEliece Cryptosystem |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
373 | (2) |
|
|
375 | (4) |
|
21 Linear Cyclic Codes, Shift Registers and CRC |
|
|
379 | (14) |
|
|
379 | (2) |
|
21.2 Generators for Cyclic Codes |
|
|
381 | (2) |
|
21.3 The Dual Code and The Two Methods |
|
|
383 | (1) |
|
21.4 Linear Feedback Shift Registers and Codes |
|
|
384 | (2) |
|
21.5 Finding the Period of an LFSR |
|
|
386 | (1) |
|
21.6 Cyclic Redundancy Check (CRC) |
|
|
387 | (1) |
|
|
388 | (2) |
|
|
390 | (3) |
|
22 Reed Solomon, MDS Codes, Bruen-Thas-Blokhuis |
|
|
393 | (18) |
|
22.1 Cyclic Linear Codes and Vandermonde |
|
|
394 | (2) |
|
|
396 | (1) |
|
|
397 | (1) |
|
22.4 Reed-Solomon Codes and the Fourier Transform Approach |
|
|
398 | (1) |
|
22.5 Correcting Burst Errors, Interleaving |
|
|
399 | (1) |
|
22.6 Decoding Reed-Solomon Codes |
|
|
400 | (3) |
|
22.7 An Algorithm for Decoding and an Example |
|
|
403 | (2) |
|
22.8 MDS Codes and a Solution of a Fifty Year-Old Problem |
|
|
405 | (3) |
|
|
408 | (1) |
|
|
408 | (3) |
|
23 MDS Codes, Secret Sharing, Invariant Theory |
|
|
411 | (12) |
|
|
411 | (1) |
|
23.2 The Case k = 2, Bruck Nets |
|
|
412 | (2) |
|
23.3 Upper Bounds on MDS Codes, Bruck-Ryser |
|
|
414 | (2) |
|
23.4 MDS Codes and Secret Sharing Schemes |
|
|
416 | (1) |
|
23.5 MacWilliams Identities, Invariant Theory |
|
|
417 | (1) |
|
23.6 Codes, Planes, Blocking Sets |
|
|
418 | (4) |
|
23.7 Binary Linear Codes of Minimum Distance 4 |
|
|
422 | (1) |
|
24 Key Reconciliation, New Algorithms |
|
|
423 | (22) |
|
24.1 Symmetirc and Public Key Cryptography |
|
|
423 | (1) |
|
|
424 | (2) |
|
24.3 The Secret Key and the Reconciliation Algorithm |
|
|
426 | (3) |
|
24.4 Equality of Remnant Keys: the Halting Criterion |
|
|
429 | (2) |
|
24.5 Linear Codes: the Checking Hash Function |
|
|
431 | (2) |
|
24.6 Convergence and Length of Keys |
|
|
433 | (5) |
|
|
438 | (1) |
|
24.8 Some Details on the Random Permutation |
|
|
439 | (2) |
|
24.9 The Case Where Eve Has Non-zero Initial Information |
|
|
441 | (1) |
|
24.10 Hash Functions Using Block Designs |
|
|
442 | (1) |
|
|
443 | (2) |
ASCII |
|
445 | (2) |
Shannon's Entropy Table |
|
447 | (2) |
Glossary |
|
449 | (5) |
Bibliography |
|
454 | (8) |
Index |
|
462 | |