Preface |
|
v | |
I A Practical Guide to Normative Systems |
|
1 | (156) |
|
Causal and Bayesian Networks |
|
|
3 | (32) |
|
Reasoning under Uncertainty |
|
|
3 | (3) |
|
|
3 | (1) |
|
|
4 | (2) |
|
Causal Networks and d-Separation |
|
|
6 | (5) |
|
|
10 | (1) |
|
|
11 | (7) |
|
|
11 | (1) |
|
Conditional probabilities |
|
|
12 | (1) |
|
|
13 | (1) |
|
Probability calculus for variables |
|
|
13 | (2) |
|
|
15 | (1) |
|
Calculation with joint probability tables |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (10) |
|
Definition of Bayesian networks |
|
|
18 | (2) |
|
A Bayesian network for car start |
|
|
20 | (1) |
|
The chain rule for Bayesian networks |
|
|
21 | (1) |
|
Bayesian networks admit d-separation |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (2) |
|
Graphical models---formal languages for model specification |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
30 | (5) |
|
|
35 | (44) |
|
|
35 | (9) |
|
|
36 | (2) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (1) |
|
Determining the Conditional Probabilities |
|
|
44 | (13) |
|
|
44 | (2) |
|
|
46 | (4) |
|
Conditional probabilities for the poker game |
|
|
50 | (2) |
|
Transmission of symbol strings |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
55 | (2) |
|
|
57 | (13) |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (1) |
|
Noisy functional dependence |
|
|
62 | (2) |
|
|
64 | (2) |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (3) |
|
|
70 | (1) |
|
Most probable explanation |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (5) |
|
Learning, Adaptation, and Tuning |
|
|
79 | (30) |
|
|
80 | (1) |
|
|
81 | (6) |
|
Example: strings of symbols |
|
|
82 | (1) |
|
Search for possible structures |
|
|
83 | (1) |
|
|
84 | (3) |
|
|
87 | (6) |
|
|
88 | (1) |
|
|
89 | (1) |
|
Specification of initial sample size |
|
|
90 | (1) |
|
Example: strings of symbols |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (9) |
|
|
95 | (2) |
|
Determining P(A/e) as a function of t |
|
|
97 | (1) |
|
Explicit modeling of parameters |
|
|
98 | (3) |
|
|
101 | (1) |
|
Dependent parameters and resistance |
|
|
101 | (1) |
|
|
102 | (2) |
|
|
104 | (1) |
|
|
105 | (4) |
|
|
109 | (48) |
|
|
110 | (4) |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
114 | (2) |
|
|
114 | (2) |
|
|
116 | (6) |
|
|
116 | (2) |
|
Myopic hypothesis driven data request |
|
|
118 | (1) |
|
Nonutility value functions |
|
|
119 | (1) |
|
|
120 | (2) |
|
|
122 | (6) |
|
|
122 | (3) |
|
|
125 | (3) |
|
|
128 | (1) |
|
Decision-Theoretic Troubleshooting |
|
|
128 | (9) |
|
|
128 | (5) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (1) |
|
The myopic repair-observation strategy |
|
|
137 | (1) |
|
|
137 | (10) |
|
|
137 | (3) |
|
Definition of influence diagrams |
|
|
140 | (2) |
|
Solutions to influence diagrams |
|
|
142 | (3) |
|
Test decisions in influence diagrams |
|
|
145 | (2) |
|
|
147 | (4) |
|
|
151 | (1) |
|
|
151 | (6) |
II Algorithms for Normative Systems |
|
157 | (96) |
|
Belief Updating in Bayesian Networks |
|
|
159 | (42) |
|
|
159 | (6) |
|
|
159 | (3) |
|
Different evidence scenarios |
|
|
162 | (3) |
|
|
165 | (1) |
|
Graph-Theoretic Representation |
|
|
165 | (4) |
|
|
166 | (1) |
|
|
166 | (3) |
|
Triangulated Graphs and Join Trees |
|
|
169 | (5) |
|
|
172 | (2) |
|
Propagation in Junction Trees |
|
|
174 | (5) |
|
Lazy propagation in junction trees |
|
|
177 | (2) |
|
Exploiting the Information Scenario |
|
|
179 | (3) |
|
|
180 | (1) |
|
|
180 | (2) |
|
Nontriangulated Domain Graphs |
|
|
182 | (7) |
|
|
184 | (3) |
|
Triangulation of time-stamped models |
|
|
187 | (2) |
|
|
189 | (3) |
|
|
192 | (1) |
|
|
193 | (8) |
|
Bayesian Network Analysis Tools |
|
|
201 | (24) |
|
|
202 | (1) |
|
Joint Probabilities and A-Saturated Junction Trees |
|
|
203 | (2) |
|
A-saturated junction trees |
|
|
203 | (2) |
|
Configuration of Maximal Probability |
|
|
205 | (3) |
|
Axioms for Propagation in Junction Trees |
|
|
208 | (1) |
|
|
208 | (5) |
|
|
209 | (1) |
|
The conflict measure conf |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (2) |
|
Other approaches to conflict detection |
|
|
213 | (1) |
|
|
213 | (6) |
|
|
213 | (3) |
|
h-saturated junction trees and SE analysis |
|
|
216 | (3) |
|
Sensitivity to Parameters |
|
|
219 | (4) |
|
One-way sensitivity analysis |
|
|
222 | (1) |
|
Two-way sensitivity analysis |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
223 | (2) |
|
Algorithms for Influence Diagrams |
|
|
225 | (28) |
|
The Chain Rule for Influence Diagrams |
|
|
227 | (1) |
|
Strategies and Expected Utilities |
|
|
228 | (8) |
|
|
235 | (1) |
|
|
236 | (5) |
|
|
238 | (3) |
|
|
241 | (1) |
|
|
241 | (4) |
|
|
245 | (1) |
|
|
246 | (5) |
|
|
251 | (1) |
|
|
251 | (2) |
List of Notation |
|
253 | (2) |
Bibliography |
|
255 | (8) |
Index |
|
263 | |