Part I: Ordinary Differential Equations |
|
1 | (390) |
|
1 INTRODUCTION TO DIFFERENTIAL EQUATIONS |
|
|
1 | (17) |
|
|
1 | (1) |
|
|
2 | (7) |
|
1.3 Introduction to Modeling |
|
|
9 | (9) |
|
2 EQUATIONS OF FIRST ORDER |
|
|
18 | (55) |
|
|
18 | (1) |
|
|
19 | (15) |
|
|
19 | (3) |
|
2.2.2 Integrating factor method |
|
|
22 | (3) |
|
2.2.3 Existence and uniqueness for the linear equation |
|
|
25 | (2) |
|
2.2.4 Variation-of-parameter method |
|
|
27 | (7) |
|
2.3 Applications of the Linear Equation |
|
|
34 | (12) |
|
2.3.1 Electrical circuits |
|
|
34 | (5) |
|
2.3.2 Radioactive decay; carbon dating |
|
|
39 | (2) |
|
2.3.3 Population dynamics |
|
|
41 | (1) |
|
|
42 | (4) |
|
|
46 | (16) |
|
2.4.1 Separable equations |
|
|
46 | (2) |
|
2.4.2 Existence and uniqueness (optional) |
|
|
48 | (5) |
|
|
53 | (3) |
|
2.4.4 Nondimensionalization (optional) |
|
|
56 | (6) |
|
2.5 Exact Equations and Integrating Factors |
|
|
62 | (9) |
|
2.5.1 Exact differential equations |
|
|
62 | (4) |
|
2.5.2 Integrating factors |
|
|
66 | (5) |
|
|
71 | (2) |
|
3 LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER AND HIGHER |
|
|
73 | (100) |
|
|
73 | (3) |
|
3.2 Linear Dependence and Linear Independence |
|
|
76 | (7) |
|
3.3 Homogeneous Equation: General Solution |
|
|
83 | (8) |
|
|
83 | (5) |
|
3.3.2 Boundary-value problems |
|
|
88 | (3) |
|
3.4 Solution of Homogeneous Equation: Constant Coefficients |
|
|
91 | (19) |
|
3.4.1 Euler's formula and review of the circular and hyperbolic functions |
|
|
91 | (4) |
|
3.4.2 Exponential solutions |
|
|
95 | (4) |
|
3.4.3 Higher-order equations (n is greater than 2) |
|
|
99 | (3) |
|
|
102 | (3) |
|
|
105 | (5) |
|
3.5 Application to Harmonic Oscillator: Free Oscillation |
|
|
110 | (7) |
|
3.6 Solution of Homogeneous Equation: Nonconstant Coefficients |
|
|
117 | (16) |
|
3.6.1 Cauchy-Euler equation |
|
|
118 | (5) |
|
3.6.2 Reduction of order (optional) |
|
|
123 | (3) |
|
3.6.3 Factoring the operator (optional) |
|
|
126 | (7) |
|
3.7 Solution of Nonhomogeneous Equation |
|
|
133 | (16) |
|
|
134 | (2) |
|
3.7.2 Undetermined coefficients |
|
|
136 | (5) |
|
3.7.3 Variation of parameters |
|
|
141 | (3) |
|
3.7.4 Variation of parameters for higher-order equations (optional) |
|
|
144 | (5) |
|
3.8 Application to Harmonic Oscillator: Forced Oscillation |
|
|
149 | (7) |
|
|
149 | (3) |
|
|
152 | (4) |
|
3.9 Systems of Linear Differential Equations |
|
|
156 | (15) |
|
|
157 | (3) |
|
3.9.2 Existence and uniqueness |
|
|
160 | (2) |
|
3.9.3 Solution by elimination |
|
|
162 | (9) |
|
|
171 | (2) |
|
|
173 | (74) |
|
|
173 | (3) |
|
4.2 Power Series Solutions |
|
|
176 | (17) |
|
4.2.1 Review of power series |
|
|
176 | (6) |
|
4.2.2 Power series solution of differential equations |
|
|
182 | (11) |
|
4.3 The Method of Frobenius |
|
|
193 | (19) |
|
|
193 | (2) |
|
4.3.2 Method of Frobenius |
|
|
195 | (17) |
|
|
212 | (6) |
|
4.4.1 Legendre polynomials |
|
|
212 | (2) |
|
4.4.2 Orthogonality of the P(n)'s |
|
|
214 | (1) |
|
4.4.3 Generating functions and properties |
|
|
215 | (3) |
|
4.5 Singular Integrals: Gamma Function |
|
|
218 | (12) |
|
|
218 | (5) |
|
|
223 | (2) |
|
|
225 | (5) |
|
|
230 | (15) |
|
4.6.1 v not equal to integer |
|
|
231 | (2) |
|
|
233 | (2) |
|
4.6.3 General solution of Bessel equation |
|
|
235 | (1) |
|
4.6.4 Hankel functions (optional) |
|
|
236 | (1) |
|
4.6.5 Modified Bessel equation |
|
|
236 | (2) |
|
4.6.6 Equations reducible to Bessel equations |
|
|
238 | (7) |
|
|
245 | (2) |
|
|
247 | (45) |
|
|
247 | (1) |
|
5.2 Calculation of the Transform |
|
|
248 | (6) |
|
5.3 Properties of the Transform |
|
|
254 | (7) |
|
5.4 Application to the Solution of Differential Equations |
|
|
261 | (8) |
|
5.5 Discontinuous Forcing Functions; Heaviside Step Function |
|
|
269 | (6) |
|
5.6 Impulsive Forcing Functions; Dirac Impulse Function (Optional) |
|
|
275 | (6) |
|
5.7 Additional Properties |
|
|
281 | (9) |
|
|
290 | (2) |
|
6 QUANTITATIVE METHODS: NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS |
|
|
292 | (45) |
|
|
292 | (1) |
|
|
293 | (6) |
|
6.3 Improvements: Midpoint Rule and Runge-Kutta |
|
|
299 | (14) |
|
|
299 | (3) |
|
6.3.2 Second-order Runge-Kutta |
|
|
302 | (2) |
|
6.3.3 Fourth-order Runge-Kutta |
|
|
304 | (3) |
|
6.3.4 Empirical estimate of the order (optional) |
|
|
307 | (1) |
|
6.3.5 Multi-step and predictor-corrector methods (optional) |
|
|
308 | (5) |
|
6.4 Application to Systems and Boundary-Value Problems |
|
|
313 | (10) |
|
6.4.1 Systems and higher-order equations |
|
|
313 | (4) |
|
6.4.2 Linear boundary-value problems |
|
|
317 | (6) |
|
6.5 Stability and Difference Equations |
|
|
323 | (12) |
|
|
323 | (1) |
|
|
324 | (4) |
|
6.5.3 Difference equations (optional) |
|
|
328 | (7) |
|
|
335 | (2) |
|
7 QUALITATIVE METHODS: PHASE PLANE AND NONLINEAR DIFFERENTIAL EQUATIONS |
|
|
337 | (54) |
|
|
337 | (1) |
|
|
338 | (10) |
|
7.3 Singular Points and Stability |
|
|
348 | (11) |
|
7.3.1 Existence and uniqueness |
|
|
348 | (2) |
|
|
350 | (2) |
|
7.3.3 The elementary singularities and their stability |
|
|
352 | (5) |
|
7.3.4 Nonelementary singularities |
|
|
357 | (2) |
|
|
359 | (13) |
|
7.4.1 Singularities of nonlinear systems |
|
|
360 | (3) |
|
|
363 | (5) |
|
|
368 | (4) |
|
7.5 Limit Cycles, van der Pol Equation, and the Nerve Impulse |
|
|
372 | (8) |
|
7.5.1 Limit cycles and the van der Pol equation |
|
|
372 | (3) |
|
7.5.2 Application to the nerve impulse and visual perception |
|
|
375 | (5) |
|
7.6 The Duffing Equation: Jumps and Chaos |
|
|
380 | (9) |
|
7.6.1 Duffing equation and the jump phenomenon |
|
|
380 | (3) |
|
|
383 | (6) |
|
|
389 | (2) |
Part II: Linear Algebra |
|
391 | (222) |
|
8 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS; GAUSS ELIMINATION |
|
|
391 | (21) |
|
|
391 | (1) |
|
8.2 Preliminary Ideas and Geometrical Approach |
|
|
392 | (4) |
|
8.3 Solution by Gauss Elimination |
|
|
396 | (14) |
|
|
396 | (5) |
|
|
401 | (1) |
|
|
402 | (2) |
|
8.3.4 Gauss-Jordan reduction |
|
|
404 | (1) |
|
|
405 | (5) |
|
|
410 | (2) |
|
|
412 | (53) |
|
|
412 | (1) |
|
9.2 Vectors; Geometrical Representation |
|
|
412 | (4) |
|
9.3 Introduction of Angle and Dot Product |
|
|
416 | (2) |
|
|
418 | (3) |
|
9.5 Dot Product, Norm, and Angle for n-Space |
|
|
421 | (9) |
|
9.5.1 Dot product, norm, and angle |
|
|
421 | (2) |
|
9.5.2 Properties of the dot product |
|
|
423 | (2) |
|
9.5.3 Properties of the norm |
|
|
425 | (1) |
|
|
426 | (1) |
|
|
427 | (3) |
|
9.6 Generalized Vector Space |
|
|
430 | (9) |
|
|
430 | (3) |
|
9.6.2 Inclusion of inner product and/or norm |
|
|
433 | (6) |
|
|
439 | (5) |
|
|
444 | (4) |
|
9.9 Bases, Expansions, Dimension |
|
|
448 | (9) |
|
9.9.1 Bases and expansions |
|
|
448 | (2) |
|
|
450 | (3) |
|
|
453 | (4) |
|
|
457 | (5) |
|
9.10.1 Best approximation and orthogonal projection |
|
|
458 | (3) |
|
|
461 | (1) |
|
|
462 | (3) |
|
10 MATRICES AND LINEAR EQUATIONS |
|
|
465 | (76) |
|
|
465 | (1) |
|
10.2 Matrices and Matrix Algebra |
|
|
465 | (16) |
|
10.3 The Transpose Matrix |
|
|
481 | (5) |
|
|
486 | (9) |
|
10.5 Rank; Application to Linear Dependence and to Existence and Uniqueness for Ax = c |
|
|
495 | (13) |
|
|
495 | (5) |
|
10.5.2 Application of rank to the system Ax = c |
|
|
500 | (8) |
|
10.6 Inverse Matrix, Cramer's Rule, Factorization |
|
|
508 | (18) |
|
|
508 | (6) |
|
10.6.2 Application to a mass-spring system |
|
|
514 | (3) |
|
|
517 | (1) |
|
10.6.4 Evaluation of A^(-1) by elementary row operations |
|
|
518 | (2) |
|
|
520 | (6) |
|
10.7 Change of Basis (Optional) |
|
|
526 | (4) |
|
10.8 Vector Transformation (Optional) |
|
|
530 | (9) |
|
|
539 | (2) |
|
11 THE EIGENVALUE PROBLEM |
|
|
541 | (58) |
|
|
541 | (1) |
|
11.2 Solution Procedure and Applications |
|
|
542 | (12) |
|
11.2.1 Solution and applications |
|
|
542 | (7) |
|
11.2.2 Application to elementary singularities in the phase plane |
|
|
549 | (5) |
|
|
554 | (15) |
|
11.3.1 Eigenvalue problem Ax = Lambda(x) |
|
|
554 | (7) |
|
11.3.2 Nonhomogeneous problem Ax = Ax + c (optional) |
|
|
561 | (8) |
|
|
569 | (14) |
|
11.5 Application to First-Order Systems with Constant Coefficients (optional) |
|
|
583 | (6) |
|
11.6 Quadratic Forms (Optional) |
|
|
589 | (7) |
|
|
596 | (3) |
|
12 EXTENSION TO COMPLEX CASE (OPTIONAL) |
|
|
599 | (14) |
|
|
599 | (1) |
|
|
599 | (4) |
|
|
603 | (8) |
|
|
611 | (2) |
Part III: Scalar and Vector Field Theory |
|
613 | (231) |
|
13 DIFFERENTIAL CALCULUS OF FUNCTIONS OF SEVERAL VARIABLES |
|
|
613 | (70) |
|
|
613 | (1) |
|
|
614 | (6) |
|
|
614 | (1) |
|
13.2.2 Point set theory definitions |
|
|
614 | (6) |
|
|
620 | (5) |
|
13.4 Composite Functions and Chain Differentiation |
|
|
625 | (4) |
|
13.5 Taylor's Formula and Mean Value Theorem |
|
|
629 | (13) |
|
13.5.1 Taylor's formula and Taylor series for f(x) |
|
|
630 | (6) |
|
13.5.2 Extension to functions of more than one variable |
|
|
636 | (6) |
|
13.6 Implicit Functions and Jacobians |
|
|
642 | (14) |
|
13.6.1 Implicit function theorem |
|
|
642 | (3) |
|
13.6.2 Extension to multivariable case |
|
|
645 | (4) |
|
|
649 | (3) |
|
13.6.4 Applications to change of variables |
|
|
652 | (4) |
|
|
656 | (19) |
|
13.7.1 Single variable case |
|
|
656 | (2) |
|
13.7.2 Multivariable case |
|
|
658 | (7) |
|
13.7.3 Constrained extrema and Lagrange multipliers |
|
|
665 | (10) |
|
|
675 | (6) |
|
|
681 | (2) |
|
|
683 | (31) |
|
|
683 | (1) |
|
14.2 Dot and Cross Product |
|
|
683 | (4) |
|
14.3 Cartesian Coordinates |
|
|
687 | (5) |
|
|
692 | (3) |
|
14.4.1 Scalar triple product |
|
|
692 | (1) |
|
14.4.2 Vector triple product |
|
|
693 | (2) |
|
14.5 Differentiation of a Vector Function of a Single Variable |
|
|
695 | (4) |
|
14.6 Non-Cartesian Coordinates (Optional) |
|
|
699 | (13) |
|
14.6.1 Plane polar coordinates |
|
|
700 | (4) |
|
14.6.2 Cylindrical coordinates |
|
|
704 | (1) |
|
14.6.3 Spherical coordinates |
|
|
705 | (2) |
|
|
707 | (5) |
|
|
712 | (2) |
|
15 CURVES, SURFACES, AND VOLUMES |
|
|
714 | (43) |
|
|
714 | (1) |
|
15.2 Curves and Line Integrals |
|
|
714 | (9) |
|
|
714 | (2) |
|
|
716 | (2) |
|
|
718 | (5) |
|
15.3 Double and Triple Integrals |
|
|
723 | (10) |
|
|
723 | (4) |
|
|
727 | (6) |
|
|
733 | (6) |
|
15.4.1 Parametric representation of surfaces |
|
|
733 | (1) |
|
15.4.2 Tangent plane and normal |
|
|
734 | (5) |
|
|
739 | (9) |
|
|
739 | (4) |
|
|
743 | (5) |
|
15.6 Volumes and Volume Integrals |
|
|
748 | (7) |
|
15.6.1 Volume element d V |
|
|
749 | (3) |
|
|
752 | (3) |
|
|
755 | (2) |
|
16 SCALAR AND VECTOR FIELD THEORY |
|
|
757 | (87) |
|
|
757 | (1) |
|
|
758 | (3) |
|
16.2.1 Topological considerations |
|
|
758 | (1) |
|
16.2.2 Scalar and vector fields |
|
|
758 | (3) |
|
|
761 | (5) |
|
|
766 | (8) |
|
|
774 | (4) |
|
16.6 Combinations; Laplacian |
|
|
778 | (4) |
|
16.7 Non-Cartesian Systems; Div, Grad, Curl, and Laplacian (Optional) |
|
|
782 | (10) |
|
16.7.1 Cylindrical coordinates |
|
|
783 | (3) |
|
16.7.2 Spherical coordinates |
|
|
786 | (6) |
|
|
792 | (18) |
|
16.8.1 Divergence theorem |
|
|
792 | (10) |
|
16.8.2 Two-dimensional case |
|
|
802 | (1) |
|
16.8.3 Non-Cartesian coordinates (optional) |
|
|
803 | (7) |
|
|
810 | (16) |
|
|
814 | (1) |
|
|
814 | (4) |
|
|
818 | (2) |
|
16.9.4 Non-Cartesian coordinates (optional) |
|
|
820 | (6) |
|
16.10 Irrotational Fields |
|
|
826 | (15) |
|
16.10.1 Irrotational fields |
|
|
826 | (9) |
|
16.10.2 Non-Cartesian coordinates |
|
|
835 | (6) |
|
|
841 | (3) |
Part IV: Fourier Methods and Partial Differential Equations |
|
844 | (264) |
|
17 FOURIER SERIES, FOURIER INTEGRAL, FOURIER TRANSFORM |
|
|
844 | (99) |
|
|
844 | (2) |
|
17.2 Even, Odd, and Periodic Functions |
|
|
846 | (4) |
|
17.3 Fourier Series of a Periodic Function |
|
|
850 | (19) |
|
|
850 | (7) |
|
|
857 | (2) |
|
|
859 | (5) |
|
17.3.4 Complex exponential form for Fourier series |
|
|
864 | (5) |
|
17.4 Half- and Quarter-Range Expansions |
|
|
869 | (4) |
|
17.5 Manipulation of Fourier Series (Optional) |
|
|
873 | (8) |
|
17.6 Vector Space Approach |
|
|
881 | (6) |
|
17.7 The Sturm-Liouville Theory |
|
|
887 | (18) |
|
17.7.1 Sturm-Liouville problem |
|
|
887 | (10) |
|
17.7.2 Lagrange identity and proofs (optional) |
|
|
897 | (8) |
|
17.8 Periodic and Singular Sturm-Liouville Problems |
|
|
905 | (8) |
|
|
913 | (6) |
|
|
919 | (15) |
|
17.10.1 Transition from Fourier integral to Fourier transform |
|
|
920 | (2) |
|
17.10.2 Properties and applications |
|
|
922 | (12) |
|
17.11 Fourier Cosine and Sine Transforms, and Passage from Fourier Integral to Laplace Transform (Optional) |
|
|
934 | (6) |
|
17.11.1 Cosine and sine transforms |
|
|
934 | (3) |
|
17.11.2 Passage from Fourier integral to Laplace transform |
|
|
937 | (3) |
|
|
940 | (3) |
|
|
943 | (74) |
|
|
943 | (1) |
|
18.2 Preliminary Concepts |
|
|
944 | (10) |
|
|
944 | (2) |
|
18.2.2 Second-order linear equations and their classification |
|
|
946 | (2) |
|
18.2.3 Diffusion equation and modeling |
|
|
948 | (6) |
|
18.3 Separation of Variables |
|
|
954 | (27) |
|
18.3.1 The method of separation of variables |
|
|
954 | (10) |
|
18.3.2 Verification of solution (optional) |
|
|
964 | (1) |
|
18.3.3 Use of Sturm-Liouville theory (optional) |
|
|
965 | (16) |
|
18.4 Fourier and Laplace Transforms (Optional) |
|
|
981 | (11) |
|
18.5 The Method of Images (Optional) |
|
|
992 | (6) |
|
18.5.1 Illustration of the method |
|
|
992 | (2) |
|
18.5.2 Mathematical basis for the method |
|
|
994 | (4) |
|
|
998 | (17) |
|
18.6.1 The finite-difference method |
|
|
998 | (7) |
|
18.6.2 Implicit methods: Crank-Nicolson, with iterative solution (optional) |
|
|
1005 | (10) |
|
|
1015 | (2) |
|
|
1017 | (41) |
|
|
1017 | (6) |
|
19.2 Separation of Variables; Vibrating String |
|
|
1023 | (12) |
|
19.2.1 Solution by separation of variables |
|
|
1023 | (4) |
|
19.2.2 Traveling wave interpretation |
|
|
1027 | (2) |
|
19.2.3 Using Sturm-Liouville theory (optional) |
|
|
1029 | (6) |
|
19.3 Separation of Variables; Vibrating Membrane |
|
|
1035 | (8) |
|
19.4 Vibrating String; d'Alembert's Solution |
|
|
1043 | (12) |
|
19.4.1 d'Alembert's solution |
|
|
1043 | (6) |
|
|
1049 | (2) |
|
19.4.3 Solution by integral transforms (optional) |
|
|
1051 | (4) |
|
|
1055 | (3) |
|
|
1058 | (50) |
|
|
1058 | (1) |
|
20.2 Separation of Variables; Cartesian Coordinates |
|
|
1059 | (11) |
|
20.3 Separation of Variables; Non-Cartesian Coordinates |
|
|
1070 | (18) |
|
20.3.1 Plane polar coordinates |
|
|
1070 | (7) |
|
20.3.2 Cylindrical coordinates (optional) |
|
|
1077 | (4) |
|
20.3.3 Spherical coordinates (optional) |
|
|
1081 | (7) |
|
20.4 Fourier Transform (Optional) |
|
|
1088 | (4) |
|
|
1092 | (14) |
|
20.5.1 Rectangular domains |
|
|
1092 | (5) |
|
20.5.2 Nonrectangular domains |
|
|
1097 | (3) |
|
20.5.3 Iterative algorithms (optional) |
|
|
1100 | (6) |
|
|
1106 | (2) |
Part V: Complex Variable Theory |
|
1108 | (152) |
|
21 FUNCTIONS OF A COMPLEX VARIABLE |
|
|
1108 | (42) |
|
|
1108 | (1) |
|
21.2 Complex Numbers and the Complex Plane |
|
|
1109 | (5) |
|
21.3 Elementary Functions |
|
|
1114 | (11) |
|
|
1114 | (2) |
|
21.3.2 Exponential function |
|
|
1116 | (2) |
|
21.3.3 Trigonometric and hyperbolic functions |
|
|
1118 | (2) |
|
21.3.4 Application of complex numbers to integration and the solution of differential equations |
|
|
1120 | (5) |
|
21.4 Polar Form, Additional Elementary Functions, and Multi-valuedness |
|
|
1125 | (11) |
|
|
1125 | (2) |
|
21.4.2 Integral powers of z and de Moivre's formula |
|
|
1127 | (1) |
|
|
1128 | (1) |
|
21.4.4 The logarithm of z |
|
|
1129 | (1) |
|
21.4.5 General powers of z |
|
|
1130 | (1) |
|
21.4.6 Obtaining single-valued functions by branch cuts |
|
|
1131 | (1) |
|
21.4.7 More about branch cuts (optional) |
|
|
1132 | (4) |
|
21.5 The Differential Calculus and Analyticity |
|
|
1136 | (12) |
|
|
1148 | (2) |
|
|
1150 | (32) |
|
|
1150 | (1) |
|
22.2 The Idea Behind Conformal Mapping |
|
|
1150 | (8) |
|
22.3 The Bilinear Transformation |
|
|
1158 | (8) |
|
22.4 Additional Mappings and Applications |
|
|
1166 | (4) |
|
22.5 More General Boundary Conditions |
|
|
1170 | (4) |
|
22.6 Applications to Fluid Mechanics |
|
|
1174 | (6) |
|
|
1180 | (2) |
|
23 THE COMPLEX INTEGRAL CALCULUS |
|
|
1182 | (27) |
|
|
1182 | (1) |
|
|
1182 | (7) |
|
23.2.1 Definition and properties |
|
|
1182 | (4) |
|
|
1186 | (3) |
|
|
1189 | (6) |
|
23.4 Fundamental Theorem of the Complex Integral Calculus |
|
|
1195 | (4) |
|
23.5 Cauchy Integral Formula |
|
|
1199 | (8) |
|
|
1207 | (2) |
|
24 TAYLOR SERIES, LAURENT SERIES, AND THE RESIDUE THEOREM |
|
|
1209 | (51) |
|
|
1209 | (1) |
|
24.2 Complex Series and Taylor Series |
|
|
1209 | (16) |
|
|
1209 | (5) |
|
|
1214 | (11) |
|
|
1225 | (9) |
|
24.4 Classification of Singularities |
|
|
1234 | (6) |
|
|
1240 | (18) |
|
|
1240 | (2) |
|
24.5.2 Calculating residues |
|
|
1242 | (1) |
|
24.5.3 Applications of the residue theorem |
|
|
1243 | (15) |
|
|
1258 | (2) |
REFERENCES |
|
1260 | (3) |
APPENDICES |
|
1263 | (19) |
A Review of Partial Fraction Expansions |
|
1263 | (4) |
B Existence and Uniqueness of Solutions of Systems of Linear Algebraic Equations |
|
1267 | (4) |
C Table of Laplace Transforms |
|
1271 | (3) |
D Table of Fourier Transforms |
|
1274 | (2) |
E Table of Fourier Cosine and Sine Transforms |
|
1276 | (2) |
F Table of Conformal Maps |
|
1278 | (4) |
ANSWERS TO SELECTED EXERCISES |
|
1282 | (33) |
INDEX |
|
1315 | |